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Abstract

Scambaiting is a defense that engages with scammers
to waste their resources and gain information about their
fraud campaigns. This defense needs automation to scale
to the vast number of scams we see today. In this paper,
we propose a scalable, automated scambaiting system,
Puppeteer, which leverages a large language model for
response generation and state machines for conversation
tracking. We measure Puppeteer’s effectiveness via a
user study, where participants play a role of a scammer
in two scam scenarios. Puppeteer convinced more than
72% of the participants that they were interacting with
a human, and was able to extract information from 68%
of participants. In comparison, using the same large
language model without conversation tracking convinced
only 54% of the participants that they were interacting
with a human and obtained information from 54% of
participants. Our results show potential for real-world
use of Puppeteer. To the best of our knowledge, we are
also the first to systematically evaluate a large language
model for a scambaiting task.

Keywords: scam, scambaiting, phishing, large
language model.

1. Introduction

A scam is a fraudulent scheme designed to deceive
individuals, often for financial gain (CNBC, 2022;
FBI, 2021; Forbes, 2022). Scams are ubiquitous and
involve a diverse range of scenarios. For example,
there are online shopping scams where people purchase
an item online, but it is never delivered (Carpineto
& Romano, 2017); charity scams where people
donate money to a fake charity (Bitaab et al., 2020);
and information extraction scams where people are

tricked into revealing their personal information, which
scammers can monetize (Oest et al., 2018). In this paper,
we focus on information extraction scams.

Online scams are simple for the attackers to set
up, and their number continues to rise (APWG, 2023),
leading to billions of dollars in losses (CNBC, 2022;
FBI, 2021; Forbes, 2022). To defend against scams,
researchers have made significant advances in scam
detection (Lin et al., 2021; Ma et al., 2009; Tian
et al., 2018; Zhang et al., 2007). Yet, some scams
bypass the detection system, and we need additional
defenses. Scambaiting is one potential defense against
scams, where the defenders engage with scammers to
deplete their resources (e.g., time and computational
resources) and also try to extract some useful information
for forensics and law enforcement.

While scambaiting shows potential in fighting scams,
it still faces some challenges that limit its practical
use. First, human-driven scambaiting tends to be very
successful. Law enforcement engages selectively with
scammers, and amateurs share their success in fooling
scammers online (NPR, 2024). Yet, human-driven efforts
cannot scale to the current volume of scams.

To address this scalability issue, researchers have
developed automated scambaiting systems (Li et al.,
2020; Molloy, 2023; Netsafe, 2017). These systems
rely on training a machine-learning model on previous
scams to produce relevant and human-like responses to
scammers. Because scam scenarios constantly evolve,
a pre-training approach cannot work to meet real-world
needs. Instead, we need a robust scambaiting system
that can produce human-like responses, work to extract
information from scammers and easily apply to any scam
scenario, without additional training.

We propose an automated scambaiting system called
Puppeteer, which engages with scammers in a human-like



manner, and works to extract useful information about
them. Puppeteer consists of three components: a
Natural Language Understanding (NLU) component, a
set of state machines, called agendas (Cho et al., 2021),
and a large language model (LLM). NLU interprets a
scammer’s utterance and its relevance to the defender’s
information extraction goal. Agendas employ a state
machine model, use the NLU interpretation to determine
the current state of the conversation and select an
appropriate LLM prompt. Finally, the LLM uses the
prompt from agendas to generate a human-like response
back to the scammer.

We further develop metrics for scambaiting systems
and systematically evaluate Puppeteer, comparing its
performance with a stand-alone ChatGPT, via an
IRB-approved human user study. To the best of our
knowledge, this is the first systematic evaluation of a
scambaiting system, and its ability to engage with a
human. Our results show that Puppeteer outperforms
stand-alone ChatGPT in every metric, underlining the
importance of tracking a conversation by agendas.
Specifically, Puppeteer achieved a success rate of 72%
in generating human-like conversations, while ChatGPT
only achieved 54%. Puppeteer also managed to extract
15 addresses and 11 phone numbers in 22 conversations,
while maintaining an average conversation length of 14
turns. Conversely, ChatGPT extracted 12 addresses and
9 phone numbers with the average conversation length
of 13 turns. Our results show the potential for real-world
use of Puppeteer to scambait.

2. Background & Related Work

The anti-scam ecosystem represents collective efforts
to combat various forms of scams, frauds, and deceptive
practices. To date, the majority of effort has been put into
the detection and prevention phases of the ecosystem.
Common detection techniques include spotting phishing
websites by their URLs (Ma et al., 2009; Tian et al.,
2018) or content (Lin et al., 2021; Zhang et al., 2007).
These techniques primarily leverage machine learning,
specifically supervised learning using many annotated
datasets. Meanwhile, prevention techniques rely on
anti-phishing tools, such as browser extensions (Akhawe
& Felt, 2013; Egelman et al., 2008) and email warnings
that notify users when suspicious phishing activities are
identified (Marforio et al., 2016; Petelka et al., 2019).
Another remedy is user training that instills awareness of
up-to-date scams to mitigate the risk of falling victim to
them (Kumaraguru et al., 2009; Reinheimer et al., 2020;
Wash & Cooper, 2018).

Nevertheless, keeping pace with the rapid growth
of scams poses significant challenges for these passive

defenses. The Anti-Phishing Working Group (APWG)
reported that in the fourth quarter of 2023, a number
of scams surpassed the previous record from the third
quarter, with over 1.3 million new attacks and more than
one hundred thousand unique email subjects in October
alone (APWG, 2023). Given the sheer volume of new
scams being introduced, retaliatory strategies during the
post-detection phase are needed in order to decelerate the
attacks. In this paper, we focus on a particular retaliatory
strategy called “scambaiting”.

In 2017, Re:Scam was introduced to combat email
scams (Netsafe, 2017), and Lenny to tackle voice
scams (Sahin et al., 2017). While Re:Scam first attracted
a lot of attention, it was shut down later that year for
undisclosed reasons. Lenny is still operational and plays
pre-recorded messages when a scammer pauses, to mimic
a person replying using silence detection.

MISSA, introduced in 2020, fine-tuned GPT-2
for scambaiting in an Amazon customer service
scam (Li et al., 2020). With the rapid advances in
LLMs, MISSA’s responses have become unsophisticated
compared to today’s zero-shot LLMs. Moreover, MISSA
cannot be applied to different scam scenarios, because
fine-tuning memorizes context and incorrectly applies it
to conversations in different contexts.

LLMs address the limitations of current scambaiting
systems (Li et al., 2020; Sahin et al., 2017), because
they can generate human-like conversations in any scam
scenario. As LLMs continue to advance, they are capable
of responding to a wide range of topics and generating
contextual and coherent responses. However, these
zero-shot responses are non-deterministic, which brings
both advantages and challenges. On the upside, the LLM
generates more diverse responses, making it harder for
scammers to recognize they are interacting with a bot.
The downside is that when the LLM is designated to
work on a specific task (e.g., extracting information), it
can lose its focus and fail to reach the objective, or it
can become hyperfocused and repetitive, revealing its
non-human nature to the scammer.

Recently, Apate (Molloy, 2023) and HackBot (Lundie
et al., 2024) were proposed. These systems use LLMs
for scambaiting, but their current publications have
no in-depth system design information or performance
evaluation and thus we cannot directly compare them
with Puppeteer.

3. Puppeteer

We propose Puppeteer, an automated scambaiting
system that leverages the LLM for response generation
and agendas (Cho et al., 2021) (state machines) for
conversation tracking. The LLM ensures that Puppeteer



is capable of generating human-like responses to a
myriad of diverse conversations, while agendas keep
Puppeteer focused on its information extraction task.

Objectives: Puppeteer has three objectives: (O1) It
should engage with the scammer in a human-like fashion;
(O2) It should make an effort to extract information
from the scammer; (O3) It should apply to various scam
scenarios with minimal or no changes.

3.1. System Architecture

Puppeteer uses three main components (Figure 1):
Natural Language Understanding (NLU) component,
agendas, and a large language model (LLM). There are
four steps involved in response generation by Puppeteer.
First, the NLU component interprets a scammer’s
utterance and its relevance to the information extraction
goal. Since interpreting an utterance is not a binary task,
NLU represents its interpretation in terms of probability
over a set of possible utterance classes, or as we call
them “intentions”. Second, the NLU interpretation (i.e.,
scammer’s intention probabilities) is shared with agendas
to determine the current state of the conversation, and
agendas select an LLM prompt based on this current state.
Third, the LLM uses the prompt prepared by agendas
to generate a response. Lastly, Puppeteer sends this
generated response back to the scammer. We explain
how we implement each component below.

Natural Language Understanding (NLU) Agendas

Large Language Model (LLM)

1

Puppeteer
Scammer

2

34

Figure 1. Puppeteer architecture

3.2. Natural Language Understanding (NLU)

The primary task of the NLU component is to
interpret a scammer’s utterance and its relevance to the
information extraction goal. This interpretation is not
straightforward. For example, consider an utterance: “If
you don’t give me your credit card information, then I
cannot help you with your order.” Even humans can
interpret this utterance differently, e.g., as a request
for credit card information or an offer of help. Hence,
we express the utterance interpretation in the form of
probabilities across different scammers’ “intentions”. An
intention is a class of utterances that all have similar
impact on the information extraction goal, e.g., asking
for information or declining to give information, etc.

To compile a comprehensive yet compact and
scam-agnostic list of scammers’ intentions, we conducted

a pilot study in which we collected 10 dialogues between
volunteers playing roles of scammers and victims in an
Amazon customer service scam (Li et al., 2020). We
then extracted all scammers’ utterances from these 10
dialogues and asked ChatGPT to cluster these utterances
into different intention groups. Table 1 shows the
finalized list of scammer intentions: ask, assist, info,
issue, refusal and general. Unlike fine-tuning, which
requires data collection for every scam scenario, our
generic list of scammer’s intentions omits specific
contexts, (e.g. a mention of Amazon orders), ensuring
that the list is applicable to any information extraction
scam scenario.

To which class do you think the message below belongs?
INPUT MESSAGE

The classes include C1, C2, ..., Cn. Here are some example
sentences for each class.

C1 : E1,1, E1,2, ..., E1,m
C2 : E2,1, E2,2, ..., E2,m

...
Cn : En,1, En,2, ..., En,m

Given these examples, output a confidence score for each class
in probability. Return as a JSON object {class}: {probability}

Figure 2. NLU prompt template

NLU performs multi-label classification that outputs
intention group probabilities, given a scammer’s
utterance. For example, “If you give me your credit
card I can help with your order” could be interpreted
as 60% ask and 40% assist. We use ChatGPT as our
NLU component to perform multi-label classification
and we use regular expressions to detect when a piece
of information matches the format of the information
we seek to extract (e.g., a phone number). Regular
expression matching is performed prior to multi-label
classification. We assign 1 to the “info” intention if the
regular expression is matched, and skip the multi-label
classification. Otherwise, we assign 0 to the “info”
intention, and proceed with the multi-label classification.
Previous studies show that ChatGPT excels in text
classification without additional fine-tuning (Sarkar et al.,
2023). We use the template in Figure 2 as a prompt
given to ChatGPT. INPUT MESSAGE is a scammer’s
utterance. The classes C1, C2, ..., Cn are the intentions
listed in Table 1 and each class Ci is provided with m
example sentences (Ei,j), collected from the pilot study.1

Puppeteer uses intention probabilities, which are output
by NLU component, to gain an understanding of what the
scammer said in the previous turn and update the current
states in agendas accordingly.

1Due to space limits, we omit a newline between each example.



Table 1. Scammer’s intentions with their descriptions and examples
Intention Description Example
ask A scammer asked for our information. We just need your credit card detail to process the payment again.
assist A scammer offered to assist with something. I’m just trying to resolve the issue regarding your order.
info A scammer provided their information. Our office is located at 3429 Station Street, Austin, Texas, 78701.
issue A scammer claimed that there are some issues with something. Your credit card information that you provided did not go through.
refusal A scammer refused to give an answer to our question. Unfortunately, I cannot disclose that information due to company policies.
general Any utterances that are unrelated to either our or scammer’s goals. You can Google our company.

3.3. Agendas

Agendas are represented as probabilistic state
machines (Cho et al., 2021; Hudson & Newell, 1992).
The inputs to agendas are the NLU’s classification
containing probabilities of the scammer’s intentions.
Agendas use this input to update the probability of each
state and identify the current state—the state with the
highest probability. Each state contains a list of candidate
instructions and agendas choose one at random to include
in the upcoming LLM prompt.

3.3.1. States and Transitions We employ agendas
to keep Puppeteer focused on its information extraction
goal. Figure 3 displays the high-level architecture of an
agenda. We manually define states based on the degree
of success in obtaining the scammer’s information from
their current utterance. The orange state indicates the
start state, whereas the green state indicates the terminal
state. Other colors indicate intermediate states. The NLU
interpretation (scammer’s intention probabilities) triggers
transitions between the states. Different transition colors
indicate different detected intentions (Table 1).

Specifically, an agenda starts at the “start” state,
where the LLM generates a response that asks for a
specific piece of information (e.g., phone number). When
the scammer replies, the agenda will check if the “info”
intention is detected, signifying that information was
obtained. There are three possible responses, illustrated
via three different transition colors, in Figure 3. The
green transitions indicate that Puppeteer obtained the full
information and as a result the agenda is complete. The
blue transitions indicate that Puppeteer obtained partial
information, and the agenda will instruct the LLM to
retrieve the remaining information. The NLU detects
which part of the information is missing and shares it
with the agenda to ensure that Puppeteer will follow up
on this missing part. For example, when Puppeteer asked
for an address and the scammer only provided a city.

The red transitions indicate that Puppeteer received
some pushback or the scammer did not provide the
requested information. In this case, we will use the
NLU-output intentions to update the pushback states.
Figure 4 illustrates pushback states and transitions within
an agenda. Puppeteer categorizes pushback into five

start pushback get partial
info

get full
info

Figure 3. State machine representing an agenda

pushback ask assist general issue refusal

Figure 4. Pushback states within an agenda

categories: ask, assist, general, issue, and refusal, where
each pushback implies a different intention (Table 1).
These states and transitions are an extension of the
main state machine shown in Figure 3. When the
probability of the “info” intention is zero, five pushback
intentions will be detected with some probabilities. We
use these intention probabilities to update the pushback
state machine, according to the Probabilistic Transition
Algorithm described in (Hudson & Newell, 1992) and
summarized in Equation 1. In the equation, Pc,s and
Pn,s are the current and new probabilities of pushback
state s, respectively, I.vals is a value list of intention
probabilities, Is is a probability of intention s, and S is
a set of pushback states. The pushback state with the
highest probability is considered to be the new current
state.

We illustrate how pushback states are updated with
a small example. When we asked the scammer for their
phone number and received a pushback response “Why
don’t you give me your number and then I’ll call you?”,
the NLU outputs the intention probabilities (I) as {ask:
0.88, assist: 0.10, info: 0.00, issue: 0.03, refusal: 0.20,
general: 0.00}. Assuming that our current pushback state
probabilities (Pc) were {ask: 0.19, assist: 0.07, issue:
0.18, refusal: 0.11, general: 0.45}. Applying Equation 1,
the new pushback state probabilities become {ask: 0.67,



assist: 0.08, issue: 0.04, refusal: 0.16, general: 0.05},
making the “ask” pushback the current state.

Pn,s =
(1 − max(I.vals))Pc,s + max(I.vals)Is∑

s′∈S
(1 − max(I.vals))Pc,s′ + max(I.vals)Is′

(1)

When Puppeteer asks for multiple pieces of
information (e.g., address and phone number), we use
one agenda per information piece. When multiple
agendas are active, Puppeteer matches the scammer’s
utterance against all pieces of information it seeks to
extract, and if any are found, the corresponding agenda
is terminated. Otherwise, Puppeteer chooses one among
active agendas to be the current agenda for a given
number of turns. For example, it may ask for an address,
making the address agenda current, converse for a certain
number of turns and if no progress is made, ask for a
phone number, making the phone number agenda current.
Then it would converse for a certain number of turns and
make the address agenda current again. Only the current
agenda’s states are updated given the output of the NLU.

3.3.2. Instructions Agendas keep a list of candidate
instructions for each state. An additional check is
performed to ensure that the list of candidate instructions
follows our strategic interaction rules, described in
Section 3.3.3. This check can eliminate some instructions
from the candidate list. Agendas then select one
instruction at random from the candidate list and will
use it to form the next LLM prompt. Table 2 displays
all available instructions. and states for which they are
available. Each instruction is accessed in a key-value
fashion. The key is a pair of action and sub-action, while
the value is the instruction.

3.3.3. Strategic Interaction Rules We strategically
define a set of interaction rules for Puppeteer, based on
previous work (Brett Stoll & Edwards, 2016; Chaves
& Gerosa, 2019; Clark et al., 2019; Rheu et al., 2021),
which suggested that a machine needs to possess three
elements below to lead a human-like conversation:

• Social interaction, such as chit-chat, offers a form
of communication unrelated to a specific goal, thus
avoiding the system being too hyperfocused.

• Identification, such as being able to share personal
information, reflects anthropomorphism of the
system and is seen as an important step to advance
non-collaborative conversations (e.g., scambaiting).

• Strategies determine (1) how much a machine should
inject social interaction without losing focus on its
main objective, and (2) when a machine should (and
should not) reveal its personal information.

We define two actions for Puppeteer, as shown in
Table 2: “extract” means working toward the information

extraction goal, and “socialize” means going along
with the scammer’s conversation and trying to appear
human-like. We use this notion to manually formulate a
set of rules below that identify which actions Puppeteer
is allowed to perform in each turn, particularly which
instructions are considered as candidates.

Rule 1: The “extract” and “socialize” actions will
alternate throughout the conversation to ensure that
Puppeteer maintains persistence toward its objective,
while avoiding a level of persistence that could lead to
discomfort, and prematurely terminate the conversation.

Rule 2: The “extract” actions are allowed to be
used for a maximum of 2 consecutive turns, while
“socialize” actions are used one at a time, ensuring
that Puppeteer prioritizes its information extraction goal,
while prolonging the conversation as much as possible.

Rule 3: Whenever Puppeteer makes progress towards
the objective, i.e., obtaining information, an “extract”
action will always be chosen for the next turn. The
rule holds true regardless of the previous rules, as
Puppeteer aims to maintain the momentum in acquiring
the information.

Rule 4: Puppeteer is provided with a fake profile
(e.g., name, phone number, address). If it cannot make
progress towards its extraction goal within T turns, it
will start to disclose its own personal information. The
hope is that by appearing to share some information, the
conversation will remain alive and potentially lead to
obtaining the scammer’s information in exchange. We
set T = 12 and instruct Puppeteer to randomly give up
one piece of its personal information after 12 turns.

Rule 5: If giving up its own personal information does
not help, we consider the chance of future success low. In
this case, Puppeteer will continue the conversation with
only the “socialize” actions, wasting scammer’s time
until the scammer leaves.

3.3.4. Generalization Our scammer’s intention list,
learned from 10 dialogues in our pilot study, is general
enough that can be applied to any information extraction
scenario. The agendas framework is designed to be
portable, allowing developers to customize (e.g., create,
modify, add, remove) agendas with minimal disruption
to the system. In fact, the agendas framework can extend
beyond just the asking-for-information task. It basically
can be applied to any task that can be modeled in the
form of state machines.

In the evaluation, Puppeteer employs two agendas:
“address” and “phone number”. Address information can
be obtained either partially or in full, while phone number
information is assumed to always be fully obtained. If
Puppeteer needs to obtain a new type of information, for
example, a social security number, all Puppeteer needs is



Action Sub-action Instruction State

extract info Ask for the scammer’s info start, pushback
full info Ask for the scammer’s full info get partial info

socialize

engaging Try not to end the conversation, but engage more pushback, get partial info
chit-chat Continue chit-chat, throw in some typos or grammar mistakes pushback, get partial info
alternative Seek alternative solutions ask, refusal
clarification Seek clarification on the matter assist
issue-info Ask for more information about the issue issue

Table 2. Instructions

a new agenda to track the progress in obtaining the social
security number and a regular expression that matches
the pattern of a social security number.

3.4. LLM

Agendas select an instruction and formulate a prompt.
The LLM then uses this prompt to generate a response.
In this paper, we define one turn as one response from
one side of the conversation. We also assume that
the conversation always involves two participants and
follows a synchronized pattern, each taking turns without
multiple consecutive responses from one side. We
select ChatGPT as the choice of LLM. Nonetheless, the
Puppeteer framework (including the NLU component) is
designed to be portable to any LLM. Agendas formulate
a prompt using the template illustrated in Figure 5. The
prompt has 3 regions:

i Please extend the conversation below by one turn.
scammer: Hi, Amazon Customer Service here. My name
is Anita Plum. I am contacting you because there are
some issues with your recent orders.
victim: Hi Anita, before we proceed, can you provide me
with your phone number so I can call you?
scammer: hi why phone number? im just trying to
resolve the issue regarding your order

ii Your response must: 1. be in one sentence; 2. be
engaging; 3. be coherent; 4. not repeat what has been
said; 5. ask the scammer for their secret information such as
phone number and address.

iii Return as a JSON object {role: “victim”, response: “”}

Figure 5. A well-crafted prompt

Stating the conversation history. We provide the
LLM with context by including the last H turns of the
conversation (region i). A large value of H captures
more history, but may cause the LLM to lose focus on
the recent conversation and appear incoherent, while a
small value of H emphasizes recent conversation, but
sacrifices the long-term memory. We set H = 8.

Providing the guidelines. We provide the LLM with
a list of guidelines to guide how it should formulate a
responses (region ii).2 The guidelines are organized as a
list, based on recent studies that show LLMs understand

2Due to space limits, we omit a newline between each guideline.

prompts better when they are formatted as a list, rather
than a paragraph (Wei et al., 2023; Zhou et al., 2023).
In each turn, the 5th guideline (highlighted in yellow)
will be the instruction (Table 2) chosen by agendas.
Essentially, this guideline is updated on each turn based
on the state of the conversation, ensuring that Puppeteer
is capable of generating a wide range of responses that are
coherent with the current conversation, while remaining
focused on its information extraction goal.

Formatting the output. We specify the desired
output format (e.g., JSON) for the LLM’s response to
ensure format consistency.

4. Evaluation

We evaluate Puppeteer with and without agendas
using human user studies, approved by our Institutional
Review Board (IRB) as exempt.

4.1. Setup

In each study, volunteer participants are asked to
portray scammers and interact with the “victim” played
by Puppeteer. Participants are not informed in advance
that the “victim” is a bot, because this mimics the
real-world scenario where a scammer would believe that
they are communicating with a human victim. At the
end of the study, we ask each participant if they believe
they interacted with a human or a bot, and to rate their
confidence in their answer, ranging from 1 (uncertain) to
5 (highly confident).

We provide participants with their profile information
(e.g., name, phone number, and address) and instruct
them to obtain the victim’s information, including phone
number, address, and credit card information. Puppeteer
is instructed to obtain the phone number and address
from the scammers. Participants are also instructed not
to make up information about themselves, nor to use real
information (e.g., their real name), but to stick to the
profile information we provided.

We advertise our study on Prolific. Participants are
provided with informed consent and are directed to an
online waiting room, where an admin (a member of the
research team) will provide instructions on how to portray
the scammer. We derive the instructions from previous



Table 3. Main results of metric scores described in Section 4.2 for each setup

Setup Scenario System
Dialogue Evaluation Metrics (DEM) Human Evaluation Metrics (HEM)

Length Extraction Score (out of 22) Human-like Score Human Confidence Bot Confidence
(mean and sd) Address Phone Number (out of 22) (range 0-5) (range 0-5)

S1
Amazon

GPT-3.5 13.22 (3.55) 12 (54.55%) 9 (40.91%) 12 (54.55%) 3.75 4.2
S2 Puppeteer 14.64 (3.17) 15 (68.18%) 8 (36.36%) 16 (72.73%) 4 3.17
S3

Giftcard
GPT-3.5 12.36 (2.74) 8 (36.36%) 9 (40.91%) 8 (36.36%) 4 3.86

S4 Puppeteer 13.45 (3.22) 15 (68.18%) 11 (50.00%) 14 (63.64%) 4.1 4.12

work (Edwards et al., 2017) that studied the techniques
real scammers use to manipulate conversations. We
are attentive to these instructions, because we need our
simulated scammers to be as close to the real scammers
as possible in order to accurately evaluate Puppeteer.

Participants who acknowledge that they understand
the instructions, are directed to a channel where the
victim or Puppeteer is waiting. Participants begin the
conversation, while the admin monitors the channel and
provides feedback, including answers to any questions
participants may have or reminders to closely follow
the instructions. Because this supervision demands a
significant effort from the admin, we conduct the user
study in small batches of 4-6 participants, ensuring that
the admin can provide full and equal attention to every
participant. Participants are instructed to engage in the
conversation until they feel the conversation becomes
unproductive. Once participants inform the admin about
ending the conversation, the admin provides a short
survey to the participants, asking whether the victim
is a human or a bot, along with their confidence score.
We award $3 to each participant whose effort we deem
satisfactory.

We evaluate Puppeteer on two scam scenarios:
Amazon and Giftcard, and collect 22 dialogues (each
from a different participant) per scenario. In the Amazon
scenario, scammers (study participants) claim that they
are from Amazon customer service. They start the
conversation by claiming that there is an issue with the
payment for the victim’s recent Amazon order. As a
result, they need the victim’s credit card information to
resolve the payment issue as well as the victim’s address
to verify the shipping, and the victim’s phone number
for further contact. In the Giftcard scenario, scammers
claim that they are from Gift Card Depot, an imaginary
company that sells gift cards. They start the conversation
by claiming that the victim is the lucky winner of a
$100 gift card and they need the victim’s credit card
information to cover the $1 shipping fee. They also
need the victim’s address and phone number for delivery
purposes.

We introduce the Giftcard scenario to verify that
Puppeteer is capable of handling different conversational

contexts. Additionally, we wanted to measure how well
the LLM, like ChatGPT, can handle the conversation
without prior knowledge about the subject, compared to
the Amazon scenario where ChatGPT certainly has the
prior knowledge about the company.

To quantify the importance of agendas, we also
conduct a user study where the victim is played by
stand-alone ChatGPT. We use GPT-3.5 with a fixed
prompt, shown in Figure 5, to tune the stand-alone
ChatGPT responses. For future work, we plan to evaluate
how Puppeteer performs with different LLMs. Table 3
summarizes all the setups in our evaluation.

4.2. Metrics

We designed evaluation metrics to align with the
objectives set in Section 3 and we categorize them into
two groups: dialogue and human evaluation metrics.
These metrics are not specific to Puppeteer, and can be
used to evaluate any scambaiting system.

Dialogue Evaluation Metrics (DEM) evaluate how
successful a scambaiting system was in extracting
information from a scammer and in keeping the scammer
engaged in conversation.

Length denotes the average number of turns per
dialogue (Section 3.4). We use length as a heuristic
for engaging with the scammer in a human-like fashion,
thereby prolonging the conversation (O1).

Extraction score denotes how many times Puppeteer
is able to obtain the scammer’s information. We use
this score to evaluate Puppeteer’s ability to extract
information from the scammer (O2). To compute this
score, we count the number of dialogues in which
scammers disclosed their information (extraction score in
Table 3 and “get” in Table 4) and specify the information
that has been revealed. We annotate whether the
disclosed information is “real” and whether it is “full”
(“real-get” and “full-get”, respectively in Table 4). Real
information means the scammer provided their profile
information (Section 4.1), whereas fake information
means they gave up information but not in accordance to
their profile. Getting full information means the scammer
disclosed the complete version of that particular piece of



information. For example, “1234 Main Street, Austin,
Texas, 78701” is considered full address information,
while “Austin, Texas” is categorized as partial address
information. In this study, we only focus on two pieces
of information: address and phone number, since these
are the two agendas Puppeteer employs (Section 3.3.4).

Human Evaluation Metrics (HEM) determine the
success of a scambaiting system in engaging with the
scammer in a human-like fashion (O1).

Human-like score denotes how many participants
believe that a scambaiting system is a human.

Human confidence denotes the average confidence
score of the participants who believed they interacted
with a human. The higher the human confidence, the
more human-like the scambaiting system is.

Bot confidence is similar to human confidence except
that this score is chosen by participants who believe that
they interacted with a bot.

Finally, we compare all the metrics between Amazon
and Giftcard scenarios, to evaluate if the scambaiting
system is applicable to different scam scenarios (O3).

4.3. Results

Although this study did not include statistical analysis
due to the small number of dialogues collected per
scenario, we present descriptive summaries based on
the evaluation metrics.
O1: Did Puppeteer engage with the scammer in a
human-like fashion? The length and HEM results
in Table 3 show that Puppeteer proficiently disguised
itself as a human. Specifically, Puppeteer was able to
extend the conversation to an average of 14.64 turns
in the Amazon scenario (S2) and 13.45 turns in the
Giftcard scenario (S4). More importantly, Puppeteer
achieved the human-like score of 72.73% in the Amazon
scenario, where 16 out of 22 participants believed that
the victim they interacted with was a human. In the
Giftcard scenario, Puppeteer achieved the human-like
score of 63.64%. On the other hand, GPT-3.5 was able to
extend the conversation to an average of 13.22 turns
in the Amazon scenario (S1) and 12.36 turns in the
Giftcard scenario (S3). GPT-3.5 achieved a human-like
score of 54.55% in the Amazon scenario and 36.36%
in the Giftcard scenario. Human and bot confidence in
all setups is relatively high, ranging from 3.17 to 4.2,
showing that participants were confident in their labeling
of the victim as either a human or a bot. Essentially,
Puppeteer outperformed GPT-3.5 in every metric of both
scenarios, underscoring the significance of agendas in
guiding the LLM to sound even more human in the
conversation.
O2: Did Puppeteer make an effort to extract

Setup
Extraction Score (out of 22)

Address Phone Number
get real-get full-get get real-get full-get

S1 12 9 7 9 7 9
S2 15 14 7 8 7 8
S3 8 6 8 9 8 9
S4 15 10 8 11 8 11

Table 4. Detail extraction score for each setup

information from the scammer? The extraction scores
in Table 3 indicate that both GPT-3.5 and Puppeteer
attempted to extract information from the scammers, with
Puppeteer successfully obtaining more information than
GPT-3.5. In the Amazon scenario (S1 and S2), Puppeteer
obtained 15 addresses and 8 phone numbers, while
GPT-3.5 obtained 12 addresses and 9 phone numbers,
from 22 participants. In the Giftcard scenario, Puppeteer
obtained 15 addresses and 11 phone numbers, and
GPT-3.5 obtained 8 addresses and 9 phone numbers,
from 22 participants. These results indeed emphasize
the improvement Puppeteer gains from agendas in
strategically seeking information, since it outperforms
GPT-3.5 in both scenarios. Additionally, we present
a more detailed annotation for the extraction scores
in Table 4. This annotation reveals that some of the
obtained information is fake or incomplete. In reality, we
expect that getting fake or incomplete information will be
common, since real scammers are supposed to be more
cautious and deceptive than our simulated scammers.
Nevertheless, the main takeaway from this evaluation is
to demonstrate Puppeteer’s ability to extract information.
Even if the obtained information is fake or incomplete,
the ability to extract something from the conversation
remains important. The more information extracted, the
more patterns identified, potentially leading to linking
and detecting scam campaigns or being able to identify
scam authors.
O3: Can Puppeteer be applied to different scam
scenarios? All the metrics in Table 3 demonstrate that,
without any adjustments, Puppeteer is applicable to both
scam scenarios. It is equally successful in information
extraction in both scenarios, and it manages to maintain
the conversation for the similar number of turns. GPT-3.5
however performs adequately in the Amazon scenario
(S1), but encounters challenges in the Giftcard scenario
(S3). Specifically, with Puppeteer, the human-like score
slightly drops from 72.73% in S2 to 63.64% in S4, while
with GPT-3.5, the human-like score significantly drops
from 54.55% in S1 to 36.36% in S3. The drop of
human-like scores in both Puppeteer and GPT-3.5 shows
that the Giftcard scenario is relatively more challenging
than the Amazon scenario. This is expected, since the
LLM has prior knowledge about Amazon, but is unaware



of Gift Card Depot, a fictional company. Prior knowledge
helps the LLM sound more human (Rheu et al., 2021).

5. Limitations and Conclusion

We develop Puppeteer, an automated scambaiting
system that addresses previous challenges in automated
scambaiting, such as incoherent responses and lack of
applicability across various scam scenarios (Section 2)
by integrating state machines (i.e., agendas) with an
LLM. We systematically evaluate Puppeteer through a
user study to demonstrate that it engages with scammers
in a human-like manner, attempts to extract information,
and is applicable to different scam scenarios. Our results
indicate that Puppeteer is very successful in extracting
information, obtaining it from 68% of scammers in both
Amazon and Giftcard scenarios, and engaging scammers
for the average of 14 conversation turns.

Despite the promising results, there are some
limitations. First, real scammers may not behave like
our volunteers. It would be more convincing to evaluate
Puppeteer with the real scammers. We note that such an
evaluation is very difficult to achieve, and we know of no
academic study that has used real scammers.

Second, scambaiting itself may seem of little value
if scammers also employ automation and use stolen
computational resources. In that case, no information
will be extracted from them and they may not care about
resource waste. However, resources that the scambaiting
system occupies on the scammer’s side, are the resources
that ultimately are not being used for scammer’s profit.
That being said, scambaiting reduces the amount of scam
sent to future human targets and overall reduces the
scammers’ profit.
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