
SDProber: Software Defined
Prober

Sivaramakrishnan Ramanathan1, Yaron Kanza2 and
Balachander Krishnamurthy2

1University of Southern California
2AT&T Labs Research

1

Delay Measurements

• Persistent delays in networks cause adverse effects
• Disrupts quality of service in applications impacting revenue

• Delay measurements needs to be done constantly
• Trade-off between detection time and measurement cost
• Lack of measurements increases detection time
• Frequent measurements affect the network

• Network operator needs to balance between measurement cost and
detection time

2

Measurements with bounds

• Bounding measurements can help in balancing the measurement cost
and detection time to the network operator
• Lower bound specifies the minimum number of inspections which needs to

be performed on link
• Upper bound limits the the number of inspections performed on link

• Existing tools such as ping and traceroute cannot apply such bounds
• Depends on the underlying routing algorithm which is inflexible
• Finding the optimal solution with pre-defined path solution is NP-hard

3

SDProber – Software defined prober

• SDProber allows adaptable and efficient delay measurements in
networks with bounded constraints
• SDProber uses probe packets to estimate the time taken for traversing

every link
• Probes in SDProber take a pseudo-random walk in a weighted graph
• Avoids complex computation

• Weights are adapted to satisfy rate constraints on links
• send more probe packets to links where lower bounds are not satisfied
• send less probe packets to links where upper bounds are satisfied

4

SDProber – System Overview

Add
mirroring/forwarding
rules

S1 S2

Time of arrival
from S1 : t1

Time of arrival
from S2 : t2

Delay=t2-t1

5

SDProber – Pseudo random walk

• For every probe packet, the initial starting node and each traversing
link are selected randomly
• By altering the initial node weights or weights on choosing the next

node, SDProber can control how probe packets inspect the network
• Easily adapts to changes in probing constraints or network
• Reduces costs

• Implementation of Random walk is done using Openvswitches group
tables and forwarding rules

6

SDProber – Pseudo random walk

• SDProber uses binary exponential backoff to adjust weights
• Initial node weights and link weights are adjusted
• Doubled/halved when probing rates are less/more than constraint

Destination MAC
of probe packet

Destination MAC
mirrored probe
packet

Forward to
Group Table in
ALL mode

Forward packet
to collector

Decrement TTL and forward to
Group Table in SELECT mode

Change DST MAC, update UDP SRC
port and forward to collector

Forward to port P1

Forward to port P2

Forward to port Pn

W1

W2

Wn

Match Action Group table in ALL mode

Group table in SELECT mode

7

Guides different types
of probe packets Mirrors probe packets Implements random walk

Evaluation: Competing approaches

• Two approaches that use shortest path to send probe packets
• In each approach, the probe packet is mirrored at every node it

traverses
• Random Pair Selection (RPS)
• For every iteration, source and destination pairs are selected randomly and

probe packets are sent through the shortest path between them
• At every iteration, source and destination pairs are selected from pairs which

have not been selected before
• Greedy Path Selection
• At each iteration, pairs of source and destination are selected such that the

sum of min-rate values of all unvisited links on paths is maximum

8

Evaluation: Setup

• Tested on 196 nodes + 243 links real topology
• Probing iteration was launched every 30 seconds
• Evaluated results on three probing profiles(small, medium, large)

having different min-rate, max-rate
• Network operators could choose probing rates based on SLA or historically

analyzing delays

9

Evaluation: Control over inspection

• Red line indicates the probability of traversing through link
• Blue line is the number of probe packets which traversed each link
• Error is ±10% from expected value

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0
 0.

00
2

 0.
00

4
 0.

00
6

 0.
00

8
 0.

01
 0.

01
2

Av
g.

 n
um

be
r o

f p
ro

be
 p

ac
ke

ts

Probabilities

Small
Medium

Large
Expected

10

Evaluation: Cost effectiveness

• For each method, we increased the number of emitted probe packets
per iteration till min-rate constraints are satisfied
• SDProber sends 4—12 times fewer probe packets than RPS and greedy
• While satisfying min-rates on all links, SDProber sends 10—62 times fewer

excess probe packets than RPS and greedy

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Small Medium Large

Av
g.

 n
um

be
r o

f p
ro

be
 p

ac
ke

ts

pe
r e

dg
e

Probing profiles

SDProber Greedy RPS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Small Medium Large

Av
g.

 n
um

be
r o

f e
xc

es
s

pr
ob

e
pa

ck
et

s
se

nt
 p

er
 e

dg
e

Probing profiles

SDProber Greedy RPS

11

Conclusion

• SDProber provides an efficient and flexible delay measurements with
measurement constraints on inspection rates
• SDProber uses probe packets to estimate delay on links
• Probes take a pseudo random walk
• Weights are adapted using binary exponential backoff to satisfy

inspection rate constraints
• Evaluated SDProber on a real world ISP topology to show SDProber’s

control over probe packets and cost effectiveness

12

Evaluation: Detection time

• SDProber detects delays twice as fast as greedy
• Links with low weights are visited last in greedy

• SDProber and RPS have comparable detection time
• But RPS sends more packets to satisfy rate constraints

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 10
0

Ti
m

e
(s

)

% of delayed links

Greedy
RPS

SDProber

13

Evaluation: Learning

• Varied % of historically delayed links
• When there are more historically delayed links, increasing ⍺ reduces

detection time by 2—6%
• When there are no historically delayed links, increasing alpha

increases detection time by 4%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0% FDL 50% FDL 100% FDL

Ti
m

e
(s

)

α2
α2.4

α2.8
α3.2

α3.6
α4 14

Choosing probing profiles

• Using SLA associated with customers
• 99.9% uptime equates to 45 minutes of down time per month
• Network operators can set the min-rate of probing such that the delayed links

are detected with guarantees
• Using historical delay data
• Links which have history of congestion can be probed more

15

Guarantees and convergence

• SDProber attempts to satisfy rate constraints with minimum
violations given several parameters (TTL, packets available per
iteration)
• Inspecting each link can provide tighter guarantees
• But is expensive, requires more probe agents and is inefficient

• Random walk provides guarantees on inspection, provided there are
enough probe packets per iteration
• Binary exponential backoff helps in expediting the satisfaction of

constraints
• There is no convergence – measurements are continuous and constraints are

used as a driving factor for faster detection with low costs

16

Timestamp

• SDProber detects persistent delays in WAN where delays are usually
in milliseconds
• Delay between switches and collector can be estimated using ping
• Delays on link could therefore be bounded
• Using historical measurements, delays greater than a particular threshold can

be alerted to the network operator
• Timestamping can be done on packets using INT
• Requires that there is clock synchronization at all switches

17

