
SENSS Against Volumetric DDoS Attacks
Sivaramakrishnan Ramanathan

Jelena Mirkovic
USC/ISI

Los Angeles, CA
satyaman,mirkovic@isi.edu

Minlan Yu
Harvard University

Cambridge, MA
minlanyu@seas.harvard.edu

Ying Zhang
Facebook, Inc.

Menlo Park, CA
zhangying@fb.com

ABSTRACT
Volumetric distributed denial-of-service (DDoS) attacks can bring
any network to a halt. Because of their distributed nature and high
volume, the victim often cannot handle these attacks alone and
needs help from upstream ISPs. Today’s Internet has no automated
mechanism for victims to ask ISPs for help in attack handling and
ISPs themselves do not offer such services. We propose SENSS, a
security service for collaborative mitigation of volumetric DDoS
attacks. SENSS enables the victim of an attack to request attack
monitoring and filtering on demand, and to pay for the services
rendered. Requests can be sent both to the immediate and to remote
ISPs, in an automated and secure manner, and can be authenticated
by these ISPs, without having prior trust with the victim. Simple and
generic SENSS APIs enable victims to build custom detection and
mitigation approaches against a variety of DDoS attacks. SENSS is
deployable with today’s infrastructure, and it has strong economic
incentives both for ISPs and for the attack victims. It is also very
effective in sparse deployment, offering full protection to direct
customers of early adopters, and considerable protection to remote
victims when deployed strategically. Deployment on the largest 1%
of ISPs protects not just direct customers of these ISPs, but everyone
on the Internet, from 90% of volumetric DDoS attacks.

CCS CONCEPTS
• Networks → Denial-of-service attacks;

KEYWORDS
DDoS defense, IP spoofing, traffic filtering, collaborative defense

ACM Reference Format:
Sivaramakrishnan Ramanathan, Jelena Mirkovic, Minlan Yu, and Ying Zhang.
2018. SENSS Against Volumetric DDoS Attacks. In 2018 Annual Computer
Security Applications Conference (ACSAC ’18), December 3–7, 2018, San
Juan, PR, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3274694.3274717

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274717

1 INTRODUCTION
Volumetric distributed denial-of-service (DDoS) attacks can over-
whelm even the largest networks. In 2016, Dyn, a large and geograph-
ically distributed DNS management network, was hit by 1.2 Tbps
attack [35], from more than 100,000 sources. In 2018, Github was hit
by a 1.35 Tbps attack, from thousands of autonomous systems and
tens of thousands of hosts [29]. Distributed attacks create problems
not just for their victims, but also for the ISPs and bystanders, which
share the path with attack traffic [6].

Volumetric DDoS attacks cannot be handled by the victim alone,
and require help of other networks. When the attack’s volume is so
high that it overwhelms the victim’s link to its ISP, or even a link
within the ISP, this ISP or other upstream ISPs must help in the
attack’s mitigation. Similarly when the attack is indistinguishable
from legitimate traffic, filtering at the victim has a high collateral
damage. Upstream networks can help identify locations close to
attack sources, and place filters at these locations, where they inflict
a lower collateral damage.

Today’s Internet has no automated mechanism for victims to ask
their peers or remote networks for help in attack handling, and has
low incentives for ISPs to offer such services. While most ISPs will
help when engaged, asking for help occurs through human channels
today, and the ISP’s response is often limited to blackholing all
traffic to the victim [32].

We propose SENSS, a framework for collaborative defense agai-
nst volumetric DDoS attacks. Using SENSS, the victim of an attack
can request help from direct and remote networks (called “ISPs” in
the rest of the paper) in an automated and secure manner, and pay
on demand for the services rendered. The victim sends messages to
SENSS-enabled ISPs (“SENSS ISPs” for short), asking for traffic
and/or route monitoring or control actions. Each message is signed
by the victim and authenticated by SENSS ISPs, which prevents
misbehavior and misuse. Replies to monitoring messages bring infor-
mation to the victim, which it can combine with its own knowledge
of its traffic and business priorities, to devise custom attack mitiga-
tion. The victim then issues control messages to SENSS servers to
mitigate the attack. SENSS APIs at ISPs can be readily implemented
by today’s infrastructure, which makes SENSS cheap for ISPs to
deploy and incentivizes deployment.

Our first contribution is the novel design of the SENSS frame-
work, for secure, automated, on-demand collaboration between vic-
tims and ISPs (Section 3). SENSS has two main design principles:

(1) Intelligence at the victim, simple functionalities at ISPs. Many
collaborative defenses place intelligence (e.g., deep packet
inspection – DPI) in the cloud or at an ISP, which makes
defense functionalities complex and costly. In SENSS, the
victim drives all the decisions, such as what to monitor and

https://doi.org/10.1145/3274694.3274717
https://doi.org/10.1145/3274694.3274717
https://doi.org/10.1145/3274694.3274717

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

which actions to take to mitigate attacks. This allows for sim-
ple functionalities at ISPs, which are easily implemented in
the current ISP infrastructure. Intelligence at the victim makes
SENSS cheap for ISPs, and effective in sparse deployment.
It also limits the impact of misbehaving participants (Sec-
tion 3.5). Victims that lack technical skills to make decisions
about attacks can delegate SENSS control to their ISPs or to
third parties via SENSS’s proxy mechanism (Section 3.5).

(2) Versatile, evolvable and customizable defense. Many defenses
today work against one or a few attack variants. SENSS’s
simple APIs can be used as building blocks by the victims to
create customized defenses against many DDoS flavors. As
attacks evolve, these simple APIs can be used to build new
defenses on top of the existing SENSS infrastructure.

Our second contribution lies in novel algorithms for handling
of direct floods, reflector attacks and cross-fire attacks, all described
in Section 3. These algorithms and SENSS enable the following
novel functionalities that are not available in today’s defenses: (1)
mitigation of direct floods close to attackers, (2) surgical mitigation
of reflector attacks, (3) mitigation of cross-fire attacks.

Our third contribution is a thorough evaluation of SENSS us-
ing simulation on the Internet’s AS-level topology and emulation
on the Deterlab testbed [2] (Section 4). SENSS is very effective in
sparse deployment, offering full protection to direct customers of
early adopters, and considerable protection to remote victims when
deployed strategically. In case of 2016 attack on Dyn, SENSS de-
ployment at Cogent, Level 3, Zayo and Comcast would have filtered
100% of the attack. In general case, deployment on the largest 1%
of ISPs would protect not just direct customers of these ISPs but
everyone on the Internet from 90% of direct floods and reflector
attacks. SENSS further filters attacks closer to their sources, and
saves twice as much bandwidth as cloud-based defenses. SENSS
overhead within an ISP remains constant irrespective of attack’s
complexity or its volume, and SENSS’s handling of client requests
requires just a fraction of a second.

2 BACKGROUND AND RELATED WORK
In this section we discuss types of DDoS attacks that we would
like to address, and the need for a collaborative defense between
victims and ISPs. We also survey related work in the operational and
research realms, and position SENSS in this landscape.

2.1 Volumetric Attacks
DDoS attacks overwhelm the victim with excessive traffic, sent from
many sources. In this work we focus on three variants of volumetric
attacks, which usually cannot be handled at the victim: direct floods,
reflector attacks and cross-fire attacks. We use the term floods to
refer to all three of these variants. Direct floods send traffic directly
to the victim. Reflector attacks send request traffic to public servers
(e.g., DNS servers), spoofing the victim’s address, and the servers
reply to the victim, overwhelming it. Cross-fire attacks send traffic to
many destinations. This traffic congests some bottleneck link in an
ISP, which is also shared by the victim’s inbound traffic. In all three
cases, there is a tree-like pattern of traffic, with attack and legitimate
sources being the leaves and the bottleneck link being the root. This
is illustrated in the Figure 1(a).

Because volumetric attacks only need to generate high enough
volume to DoS the victim, they do not have to have a specific sig-
nature. They can also be spoofed. Further, they can be launched
from many distributed sources. The 2016 Dyn attack [35] and 2018
Github attack [29] were launched from 10,000 – 100,000 of sources,
distributed over thousands of networks.

2.2 Related Work

DDoS defense is a mature field. In this Section we focus only
on defenses, which address volumetric attacks, and on collaborative
DDoS defenses.

Victim-end defenses, such as Bro [27] or Arbor APS [25] are
often used to detect and filter smaller DDoS attacks. However, large
volumetric attacks cannot be handled by the victim, because the
bottleneck is upstream from the victim’s network.

First-ISP. The victim can engage its ISP through human channels,
to help in mitigation, i.e., to filter the attack. Most ISPs offer only
crude filtering of all traffic to the victim, aka remotely-triggered
black hole (RTBH) [32]. This protects ISP infrastructure, but cuts
the victim off the Internet and exacerbates the impact of the attack.

Bohatei [8] is a research defense within a single ISP. It uses
software-defined networking (SDN) and network function virtual-
ization (NFV) to offer flexible, elastic DDoS defense. It instantiates
a number of VMs on demand, and steers victim’s inbound and
outbound traffic through these VMs, which implement custom miti-
gation programs. Bohatei’s custom programs offer finer-grain traffic
analysis at a higher resource cost (statistics storage and application
header access) than SENSS. SENSS is complementary to Bohatei,
as it handles spoofed and cross-fire attacks, which cannot be handled
by Bohatei.

Cloud-based defenses, such as CloudFlare [6] and Zenedge [36],
defend against attacks through geo-replication of the victim’s re-
sources. To effectively defeat floods, this geo-replication needs to
be extensive, requiring equipment and peering contracts at many
locations and a lot of excess bandwidth to withstand high-volume
attacks. When a cloud wants to grow, it has to enter into more
peering agreements and buy and install more equipment and fiber;
both are expensive. Clouds attract all the victim’s inbound traffic
to themselves, and apply “packet scrubbing” to identify an attack
signature and filter the attack traffic. Clean traffic is then tunneled to
the victim. The scrubbing process is proprietary, but it often involves
deep-packet inspection (DPI), and thus has a high processing cost.

Compared to clouds, SENSS enables ISPs on the attack path to
offer a distributed attack response, through victim-ISP collabora-
tion. ISPs deploy SENSS on their existing infrastructure, leveraging
existing functionalities like SDN, Flowspec [22], Netflow and ac-
cess control lists (ACLs). This makes SENSS’s deployment costs
smaller than that of clouds. On the other hand, SENSS filters are
coarser-grain (network- and transport-level but not application- or
payload-level) than those of clouds, which may lead to a higher
collateral damage for application-level attacks. For this reason, SE-
NSS focuses only on handling of volumetric attacks, which usually
randomize fields after the transport header.

SENSS Against Volumetric DDoS Attacks ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

leaves
root
=
bottleneck

(a) DDoS tree – traffic converges (b) Cloud defense (c) SENSS

Figure 1: DDoS attacks and ways to handle them. (a) Attack traffic mostly converges at one bottleneck, forming a tree-like pattern.
(b) filter in a cloud, requires redirection and dedicated infrastructure (c) filter on the path of the attack, with ISP’s help, using SENSS

SENSS infrastructure grows when more networks adopt SENSS
and start supporting it on its existing infrastructure. This makes
SENSS growth more sustainable than cloud growth.

We illustrate handling of network floods by clouds and by SENSS
in Figures 1(b) and 1(c) respectively. While clouds divert the victim’s
inbound traffic to their infrastructure, SENSS empowers ISPs on the
traffic’s path to help in attack diagnosis and mitigation. This saves
more bandwidth (see Section 4.4).

Collaborative defenses. The need for collaborative defense agai-
nst evolving DDoS attacks was elaborated by Kang et al. in [14].
There are several collaborative research approaches to DDoS mitiga-
tion, such as Pushback [12], traceback [10], StopIt [20], AITF [1],
DefCOM [26], CoDef [19], SIBRA [4], SCION [28], TVA [34], De-
fense by Offense [33] and SPIFFY [15]. Some of these approaches
are not deployable today, because they require Internet redesign –
TVA and SCION. Other approaches are less deployable than SENSS,
because they require router hardware changes. Traceback, StopIt,
AITF, CoDef and DefCOM require packet marking at routers, and
StopIt requires cryptographic operations on traffic.

Further, some approaches apply victim-to-source collaboration
model – StopIt, Defense by offense and CoDef – which has the
victim ask the source networks (legitimate or attack) for help in
attack mitigation. Victim-to-source collaboration cannot be effective
in sparse deployment, because many sources would reside in legacy
networks. SENSS, on the other hand, is very effective in sparse
deployment, thanks to its victim-to-ISP collaboration model. Even a
few ISPs on the attack’s path, collaborating with the victim, enable
that victim to filter much of the attack traffic.

Pushback [12] applies ISP-to-ISP collaboration. Such collabora-
tion is difficult in general, because an ISP handles a lot of traffic for
many customers. Moderate floods, which may not be noticeable at
the ISP level may overwhelm a customer on a small downlink. To
detect these floods the ISP would have to continuously monitor all
its customers’ traffic, which is costly. It would also have to make
guesses as to which traffic to filter, while a victim can make a better
decision (and implement it with SENSS) based on its knowledge of
its inbound traffic patterns.

CoDef [19] focuses on handling of cross-fire attacks, through col-
laborative rerouting and rate limiting. Collaboration occurs between
the affected network and the networks that host legitimate sources.
CoDef’s mitigation (rerouting) resembles SENSS’s route control

messages, but its diagnosis requires packet marking, while SENSS
does not require this. SENSS is thus more deployable than CoDef.
Further, CoDef’s collaboration model (victim-to-source) means that
CoDef requires a wider deployment than SENSS to achieve a given
effectiveness target.

SIBRA [4] introduces a new mechanism for legitimate sources
and destinations to reserve bandwidth on inter-AS links, and thus
isolate themselves from DDoS attacks. SIBRA is complementary
to SENSS and attempts to prevent DDoS, while SENSS attempts
to mitigate it. SIBRA also requires more extensive changes to ISPs
than SENSS and is thus less deployable.

SPIFFY [15] introduces implicit collaboration between the bottle-
neck and sources of traffic, by temporarily expanding the bottleneck
link and identifying sources, which do not expand their sending
rate, as attackers. SPIFFY only handles cross-fire attacks and is thus
complementary to SENSS.

2.3 SENSS vs First-ISP vs Clouds
We now briefly discuss how SENSS could complement current
operational solutions: first-ISP and clouds.

SENSS’s messaging mechanism offers a way for remote networks
to collaborate on demand, without prior trust. As such, SENSS mech-
anisms could be used to remotely trigger first-ISP or cloud-based
solutions. This could transform cloud defenses from pre-arranged
into on-demand solutions.

SENSS could further be used when first-ISP or cloud defenses
fail or are overwhelmed (e.g. Spamhaus attacks in 2013 [31] and
Dyn attacks in 2016 [35]). A cloud or an ISP can use SENSS to
achieve a collaborative response with other ISPs in the Internet, to
lighten its load. SENSS can also benefit from clouds and first-ISP
solutions, which could act as victim proxies, and enable adoption of
SENSS among non-technical victims.

3 SENSS
In this section, we discuss challenges of collaborative defense, pro-
vide a high-level overview of SENSS operation, and detail how
SENSS would be implemented at ISPs and at attack victims.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

SENSS
server

SENSS
client

victim

attacker
SENSS
server 2. Query and reply

3. Control

2. Query and reply

3. Control

SENSS
directory

1. Lookup
 SENSS
 servers

Figure 2: SENSS architecture.

3.1 Challenges
When designing a collaborative defense, we must address the labor-
division challenge (what will be done where), the deployment chal-
lenge (how to motivate deployment) and the security challenge.

Labor division: we must decide which functionalities are re-
quired for attack handling and where to implement them. SENSS
uses victim-to-ISP collaboration, which places all the intelligence at
the victim and requires only simple functionalities of ISPs. This en-
ables a victim to request help from any ISP for diagnosis and mitiga-
tion, but remain fully in control over the attack handling. The victim
can combine its internal knowledge of its business and customers,
with observations received from SENSS, to create customized de-
fenses. Because the victim can directly contact any SENSS ISP,
neighbor or remote, SENSS is very effective in sparse deployment
(see Section 4) and robust to misbehavior (see Section 3.5).

Deployment: collaborative defenses must offer significant ben-
efits to networks that deploy them. SENSS brings clear benefits to
the victims of attacks, but the challenge lies in making it appealing
to ISPs. We address this challenge in several ways. First, SENSS
handles several attack variants, thus an ISP can offer it to current
customers as added value, and many customers may find it useful.
Second, SENSS works with existing hardware and thus has low cost
to deploy. Third, SENSS offers significant benefits to early adopters,
thus ISPs can offer immediate protection to their customers against
DDoS, even in sparse deployment.

Security: collaboration should not introduce new vulnerabilities
even under direct attacks, or when some collaborators misbehave.
SENSS has multiple security layers to protect against misuse: (1) It
allows the victims to only observe/control traffic and routes for their
prefixes, whose ownership is proved via digital certificates. SENSS
ISPs validate these certificates before processing each request. (2)
All communication between the victim and the SENSS ISPs is
secured using TLS, and is thus protected against message sniffing,
forgery, modification or replay, (3) SENSS operation is driven by the
victim, with each SENSS ISP reporting its own observations of the
victim’s traffic and routes. Such design severely limits the impact of
a misbehaving ISP (see Section 3.5).

3.2 SENSS Architecture
Figure 2 illustrates SENSS operation. SENSS consists of client code,
which runs at an end network or an ISP, and server code running
at an ISP. Clients are illustrated as blue circles and servers as grey
circles in the Figure. We refer to the client-deploying network as
the victim, but it may decide to engage SENSS even in absence of

attacks, e.g., to learn about its normal traffic patterns. An ISP can
decide to provide SENSS services for free or for a fee, which could
be a flat-rate or per-message fee. Economically, a per-message fee
makes the most sense as the ISP incurs cost for running SENSS only
when it handles SENSS messages, and a victim is only interested in
paying for SENSS when they are under attack.

An ISP deploys SENSS by implementing SENSS APIs on a
server, and exposing them to the public. These APIs can be im-
plemented as a Web service, and thus deployed at the ISP’s Web
server. This leverages existing approaches for service robustness
(Web server replication), message security (HTTPS), and charging
for service (e-commerce). The ISP also implements automated mech-
anisms within its network, which act on SENSS client’s requests by
implementing traffic/route handling in border routers. This is shown
as grey lines in the Figure. These mechanisms can be implemented
as a collection of scripts, which communicate with switches/routers
using Netflow, Openflow, Flowspec or switch-specific management
language (e.g., for ACL setup). We assume that all client-server
communication occurs at the network level and not at the host or
user level. This limits the cost of communication and the state at
SENSS servers.

A victim under attack runs the SENSS client. The client first
uses a public SENSS directory to identify multiple SENSS servers
(step 1 in the Figure). One way to implement this directory is to
assign a common DNS name to each SENSS server. The victim
sends queries to SENSS servers about the victim’s inbound traffic or
the routes to the victim’s prefixes (step 2 in the Figure). For security
reasons, clients are only allowed to ask about and manipulate traffic
and routes for the prefixes their network owns. While some attack
diagnostics may be easier if we allowed clients to ask about anyone’s
traffic, this would create grave privacy concerns, and jeopardize
adoption of SENSS.

Each query is accompanied by a digital certificate, which proves
the that the client is authorized to issue query and control messages
about the IP prefixes contained in the query. We call this certificate
proof of prefix ownership and provide more information about it
in Section 3.5. The SENSS server validates the certificate and the
message, performs the required service, charges the victim for it, and
returns the response to the client (step 2 in the Figure). The server
may also decide not to perform a given action, e.g., because it would
be against some internal policy or because it would consume too
many resources. In this case the server does not charge the victim
and simply returns a reject message to the client.

The client analyzes responses obtained from SENSS servers,
identifies the best action and the best locations for mitigation (e.g.,
filtering, rerouting) and issues control messages to chosen SENSS
servers (step 3 in the Figure), which authenticate them, charge for
and perform the actions. The query and control steps can be repeated
multiple times, until the desired mitigation effect is achieved.

3.3 ISP Implementation
APIs. Table 1 summarizes SENSS APIs, used by the client to
request SENSS services. Each message has an action field, which
specifies if the traffic/route handling rules should be installed (start)
or removed (stop) at the SENSS ISP. The server enacts these handling
rules after each message, by installing them in the appropriate border

SENSS Against Volumetric DDoS Attacks ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Type Message Matching Fields Action Reply/Response
Traffic query traffic_query predicates, otime start/stop rule_id and a list of <tag, direction, #bytes/#pkts> matching the predicate during otime
Route query route_query prefix none rule_id and AS paths from the SENSS ISP to the prefix
Traffic control filter/allow predicates, tag, dur start/stop rule_id and filter/allow all traffic matching the <predicate, tag> for duration dur
Route control demote prefix, seg, dur start/stop rule_id and reduce pref. of routes to prefix if they contain seg in AS path, for duration dur
Abort abort prefix none delete all rules for the prefix, and blacklist the public key

Table 1: SENSS APIs

A B

C
D

E

F
client server

traffic_query(dst=1.2.3.0/24, 10s, start)
traffic_reply(id=1, (Tc,IN,1000)(Td,IN,10)(Tf,IN,10000))

prefix 1.2.3.0/24

Figure 3: Illustration of traffic query.

routers at the ISP. The server then replies with a unique identifier
(rule_id) to the client. All rules expire after the duration (otime or
dur parameter) specified in the message. When a rule expires at the
server, the server removes the rule from the routers where it was
installed. The client may choose to remove a handling rule prior to
its expiry, by setting the action field to stop and specifying rule’s
identifier. Additionally, the client can use a special abort message,
which removes all the rules for the given prefix. A SENSS server
may also decide not to handle the client’s message, and return a
reject reply to the client.

The basic building block of traffic messages (traffic_query and
traffic_control) are predicates, which match a flow based on header
fields. For example, the predicate “(src_ip=10.0.0.1 | src_ip=10.0.0.2)
& src_port=53” matches flows with source IP 10.0.0.1 or 10.0.0.2
and source port 53. Predicates support conjuction (&), disjunction
(|), negation (!) and wildcard (*) operators. Predicates can also spec-
ify traffic direction (SELF – generated by the ISP, IN and OUT), and
they can specify a tag, denoting a peering link to which the query
applies. A traffic_query asks for monitoring of traffic matching the
predicate for time otime. On receiving a traffic_query, a SENSS
server installs the appropriate traffic collection rules (Openflow or
Netfilter) to some or all border routers. After time otime the server
collects observations from the routers and removes the collection
rules. It then aggregates these observations into a single reply, and
sends it to the client. The reply contains rule_id, and a list of tuples.
Each tuple contains a tag, identifying the neighbor, traffic direction
dir and the amount of traffic observed in packets or bytes. The tag
is the ISP-specific, unique identifier per neighbor, and should be
anonymized in a manner, which is reversible only by the ISP. For
example, the ISP could encrypt the neighbor’s identity with a secret
key. If the client later requests filtering of traffic with a given tag, the
ISP decrypts the tag to identify the appropriate peering link and the
switch, where the filters should be installed. One traffic_query and
its reply are illustrated in Fig. 3. The client A asks for monitoring
traffic to its prefix, 1.2.3.0/24, for 10 seconds. The server B replies
with the list containing three records – one for each neighbor that
forwards traffic to B with destination IP in 1.2.3.0/24.

A traffic_control message requests a SENSS ISP to filter or allow
traffic matching the specific predicates and tags, for the duration dur.
If the client sends multiple messages for the same prefix, they will be
matched in the order in which they are received. The server translates
each rule into a filtering rule that its routers understand (e.g., ACL,

Flowspec, Openflow) and installs it at the routers matching the tag
field from the message. Rules are removed after time dur.

A route_query asks an ISP about the AS paths in its best routes to
the prefix. The server collects the best routes from all border routers,
and replies with the set of unique AS paths.

A route_control message asks an ISP to demote all its routes
for the select prefix that contain the AS-path segment seg, for the
duration dur. The server collects all the routes from each border
routers for the specified prefix. It then decides for each router if the
route should be demoted. This decision can take into account the
ISP’s internal route selection policy and the cost of demotion (e.g., if
a customer route is being demoted and the next best route is peer or
provider route there will be an associated cost). If the server decides
to demote the route, it issues appropriate messages to the router’s
BGP daemon. After time dur these messages are reversed.

Identifying deployment routers. After receiving and validating
(see Section 3.5) a SENSS message, the SENSS server identifies the
routers or switches, which should implement the required function-
ality. For traffic queries with IN direction, and for route queries and
route control, all ingress routers would be used. For traffic filters, the
server only needs to identify those ingress routers that were specified
in the tag field of the client’s message. If no tag is specified, the
egress router to the specific prefix can be used for filter installation.

Implementing monitoring and control at routers. If the ISP sup-
ports SDN, SENSS can implement all traffic observation and control
functionalities by issuing OpenFlow messages to the SDN controller.
For ISPs that do not support SDN, a SENSS server can enact traffic
observation by installing Netflow collection rules in routers. For
cost reasons, the server can install rules that use packet sampling,
and then extrapolate the actual packet/byte rates for the traffic_reply.
Finally, each router supports access control lists (ACLs). SENSS
server can enact traffic monitoring of a flow by installing an ACL
rule with “permit” target, and later querying the number of packets
that matched the rule.

The server can implement traffic control at non-SDN ISPs by
using ACLs or Flowspec [22]. The SENSS server implements route
observation and route control by using BGP software. For route
observation, it queries the given router for its best route to the select
prefix. For route demotion, it first queries the given router for all
its routes to the select prefix. Then it decides which, if any, routes
to demote and issues commands that lower the values of the routes’
local preference attributes.

Practical issues. SENSS messages lead to rules being installed
at a router’s TCAM, whose space is usually limited. We find that
many distributed attacks can be handled efficiently with very few
rules per router, using coarse flow specifications on fields such as
neighbor tag, destination IPs, transport ports, protocols, etc. On the
other hand, the client may rarely want to observe and control flows
at a fine-grained level, using the source IP field. Since the number of
rules, which use source IP field, could quickly skyrocket, ISPs could

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

discourage use of such rules by pricing them much higher than other
rules. In Section 4 we show that DDoS attacks can be handled well
with coarse-grained rules.

An ISP may have privacy concerns about others learning about
their traffic handling and routes. We have carefully designed SE-
NSS to avoid leakage of information that ISPs consider private or
sensitive, such as traffic load balancing and peering.

(1) Route replies reveal only public peering information, which
is already visible in BGP advertisements.

(2) Traffic replies are anonymized or aggregated. An ISP can
return encrypted tags in traffic replies that ask only about
IN direction, as we illustrate in our examples for flood w/o
signature in Section 3.4. When the victim sends filter requests,
the ISP decrypts the tags to identify where to place filters. In
traffic queries that ask about IN and OUT traffic (e.g., cross-
fire example) the ISP can return aggregated traffic (“all” tag
in our example for cross-fire) or omit traffic volume. This
protects confidential load balancing information.

An ISP may not be open to others changing its routing decisions
in any way. Such an ISP can always return the reject response for
demote messages. This will make it unable to aid in cross-fire attack
mitigation, but it will still be able to help in handling direct floods
and reflector attacks.

3.4 Client Programs
We now illustrate how a victim could design custom attack mitiga-
tion programs using SENSS APIs, by presenting four programs for
mitigation of the following attacks: direct floods with and without
transport/network signature (we use the terms flood w sig and flood
w/o sig), reflection and cross-fire attacks. All are novel contributions,
made possible by the SENSS APIs (Table 2).

Detection of DDoS attacks and identification of the attack signa-
ture is out of scope of our research. The victim can use existing tools,
such as AMON [13], Packetscore [17], Bro [27] or Arbor APS [25].

Floods w sig. If the SENSS client has a network/transport sig-
nature (e.g., the target destination IP and port number) to separate
legitimate from attack traffic, it uses SENSS to send traffic_filter
messages containing the signature and the target prefix to SENSS
servers. Figure 4(a) illustrates handling of floods with signature. To
preserve budget, the client can install filters only on some servers
that are likely to carry most of the attack, e.g., Tier 1 and Tier 2 ISPs,
and install them one by one, until mitigation is achieved.

Floods w/o sig. When DDoS attack traffic is very similar to the
legitimate traffic or very diverse or spoofed, the victim cannot derive
a sufficiently specific TCP/IP header signature, to separate the attack
from the legitimate traffic. Using SENSS the client can observe the
differences in the geographical distribution of the victim’s inbound
traffic prior and during the attack. Such differences usually exist,
because both the legitimate and the attack traffic’s distribution over
source networks are heavy-tailed. This can be used for location-
based filtering, where the client identifies ISP-ISP links (tags) where
filter placement would minimize collateral damage. During normal
operation, the client periodically issues traffic_queries, and extracts
the tags and the volume of traffic for the ISP-ISP links – prei . Let
preT be the total inbound traffic prior to the attack. During attack,
traffic_queries are repeated, to learn the tags and volume of links that

now carry a mix of attack and legitimate traffic – posti . Comparing
prei and posti , our program identifies candidates for filter placement
(i) as those tags where posti is large but prei was small or zero. The
program uses a parameter α ∈ (0, 1) to crudely control anticipated
collateral damage. It orders tags by their prei values, in an increasing
order, and selects first N so that prei1+prei2+ ...+preiN ≤ α ·preT .

Figure 4(b) illustrates handling of floods without signature, with
tag names starting with letter “t” (anonymized) and reported traffic
volume shown in parentheses. We highlight the tags that are candi-
dates for filtering, assuming α = 0.2. This example also illustrates
how the client can patch together a partial view of the DDoS tree
even in sparse SENSS deployment.

Reflector attacks. Reflector attacks are challenging to handle,
because the victim wants to receive replies to its legitimate service
requests, and must filter replies to spoofed traffic, but these two
kinds of replies are very similar at the network level (e.g., in Figure
4(c) the victim wants to receive the blue traffic and filter the grey).

We handle reflector attacks by the victim network “marking” all
its query traffic, by NATing all its legitimate requests for targeted
service S, using a small range of port numbers R=[a, b]. NATing
can be done at the border router of the victim’s network. NATing
creates an artificial TCP/IP signature, which persist in replies. We
can use this signature to filter out replies caused by attack traffic,
because these replies will not go to the NAT IP address nor to the
port numbers in the range [a,b].

The SENSS client installs two filters at each selected SENSS
server, which will be applied in this order: (1) to allow all traffic
to the NAT on ports in range [a,b], from service port for S, (2)
to deny all other traffic to victim’s prefixes coming from service
port for S. This surgically removes all of the attack and has no
collateral damage. Range [a,b] must be chosen so that it is small
enough to make guessing hard, and large enough to accommodate
regular request traffic. The client further must frequently change
the range [a,b] to avoid guessing and DNS hijacking attacks. We
analyzed traffic from public traces (MAWI [11]) and found that
99.9% of networks could keep around 300 ports in the range [a,b],
and change them each 10 seconds to satisfy these conditions. Figure
4(c) illustrates handling of reflector attacks.

Cross-fire. The cross-fire attack [16] creates congestion at an ISP
upstream from the victim. For example, in the Figure 4(d), attack
networks S1, S2, S4 and S6 send traffic to D1, D2 and D3, and the
congestion occurs at A, causing V’s inbound traffic drops.

SENSS client can: (1) identify AS path segments that host the
bottleneck and (2) mitigate the attack by re-routing around the bot-
tleneck. To identify the bottleneck AS path segment the client first
issues route_queries to select SENSS servers, and extracts the AS
paths from the replies, forming the control plane path set – CPPS.
The client then traverses each path in the set issuing a traffic_query
for SENSS server in each AS (if such server exists) on the path. If
a SENSS ISP has multiple ASes, the server replies separately for
each AS specified in the query. The client compares the outgoing
traffic from the upstream reports with the incoming traffic from the
downstream reports. It identifies the bottleneck segment as the seg-
ment where the upstream AS reports sending more traffic than was
received by the downstream AS. The client mitigates the attack by
issuing demote messages containing the bottleneck link to select SE-
NSS servers. To be robust against lying servers, the client includes

SENSS Against Volumetric DDoS Attacks ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Attacks Key Idea SENSS features we use
Flood w sig Filter traffic based on signature filter
Flood w/o sig Identify geographical differences between usual and attack traffic paths; use for filter placement traffic_query before and during attack, filter
Reflector DDoS Victim marks traffic; ISPs filter non-marked traffic filter, allow
Cross-fire Locate bottleneck links via traffic queries and route around them. Combines route/traffic info. route_query, traffic_query, demote

Table 2: Key innovations of client programs and the SENSS features we use

V
A B C D

E
F G

H

I

J K L
S3

S4

S5

S6
1 40

2

8

t1
t2

t3

t6t5

t7

V to A: filter(dst_IP=v1 & dst_port=25, *, 5min, start)
V to G: filter(dst_IP=v1 & dst_port=25, *, 5min, start)

(a) Flood w sig

V to A, D, G, J, L:
traffic_query({dst_IP=v1,dir=IN}, 10s, start)
A to V: t5 (1)
D to V: t6 (1)
L to V: t2 (2)
J to V: t1 (2)

V
A B C D

E
F G

H

I

J K L
S3

S4

S5

S6
1 40

2

8

t1
t2

t3

t6t5

t7

Before attack:

During attack:
V to A, D, G, J, L:
traffic_query({dst_IP=v1, dir=IN}, 10s, start)
A to V: {t5, IN, 1} {t7, IN, 40}
D to V: {t6, IN, 1}
G to V: {t3, IN, 8}
L to V: {t2, IN, 2}
J to V: {t1, IN, 2}
V to A: filter(dst_IP=v1, t7, 5min, start)
V to G: filter(dst_IP=v1, t3, 5min, start)

(b) Flood w/o sig

V
A B C D

E
F G

H

I

J K L

S1
S2

S4

S5

S6

100

10

2

100

8

5000

400

500

S4

S3

V NATs its traffic to dst_port 53 to use IP vn and range of ports [a,b]
V to A-L: allow(dst_IP=vn & src_port=53 & dst_port=[a,b], *, 5min, start)
V to A-L: filter(dst_IP=V & src_port=53, *, 5min, start)

(c) Reflector

V
A B C D

E
F G

H

I

J K L

S1
S2

S3

S4

S5

S6
100

50

1

10

50

10

D1
D2 D3

t1

t2 t3 t4

t5

t6
t7

t8
t10

t11t12

V to A, D, G, J, L:
route_query(dst_IP=v1)
A to V: V
D to V: CBAV
G to V: FEV
L to V: KJEV
J to V: EV
CPPS={DCBAV, GFEV, LKJEV}

V to A, D, G, J, L: demote(dst_IP=v1, seg={AV}
D starts using path HGFEV

Control-path discovery
Bottleneck detection
V to A, D, G, J, L:
traffic_query({dst_IP=v1, dir={IN,OUT}}, 10s, start)
A to V: {all, IN, 100} {all, OUT, 50} {all, SELF, 0}
D to V: {all, IN, 100} {all, OUT, 100} {all, SELF, 0}
J to V: {all,IN, 1} {all,OUT, 1} {all, SELF, 0}
L to V: {all, IN, 1} {all, OUT, 1} {all, SELF, 0}

Mitigation

(d) Cross-fire

Figure 4: Illustration of DDoS attack handling with SENSS. Yellow nodes are victims, blue are legitimate clients and red are attackers.
White nodes are ISPs that do not deploy SENSS, and grey are ISPs that deploy SENSS. Red and blue lines represent attack and
legitimate traffic, respectively. Grey lines represent replies to spoofed requests. Numbers in the same color above the lines represent
volume in Gbps. Black tags on links are ISP-specific, anonymized tags that will be used in some replies by SENSS. We show only
relevant fields in SENSS messages, shown as text above the diagram.

the reporting AS in the bottleneck segment. Figure 4(d) illustrates
handling of cross-fire attacks. We have highlighted the identified
bottleneck, which will be demoted. Query replies have aggregated
traffic in reports to protect ISP’s load balancing decisions.

3.5 Security and Robustness
In this Section we detail how we have secured SENSS against direct
attacks and misuse.

Securing communication: SENSS only allows the victim to issue
messages about its own prefixes. The proof of prefix ownership is
publicly verifiable, unforgeable information, which binds the SENSS
client’s public key with the list of its prefixes. The client includes its
prefix-ownership certificate with each request. Upon successful cer-
tificate verification, the ISPs cache the {public key, prefixes owned}
information for some short time.

We can create proof of prefix ownership by using RPKI ROA
(Route Origin Authorization) certificates. SENSS ISPs deploy RPKI
certificate verification. Using RPKI certificates enables SENSS
servers to verify requests from remote clients, with whom they
have no prior trust. While a client would still have to establish a
payment mechanism to pay for services, this can be automated using
e-commerce solutions.

RPKI is today deployed in a limited fashion, mostly because net-
works see no special benefit of RPKI in sparse deployment. If SENSS
used RPKI to very prefix ownership, this may provide added incen-
tive for deployment. Today’s increasing deployment of MANRS
[21] also motivates larger deployment of RPKI. As an alternative to
RPKI certificates, which contain much additional information not
needed by SENSS, we could design new certificates, which bind a
public key with prefixes owned. These certificated would be issued

by the same entities that today issue RPKI ROA certificates, i.e.,
authorities that have assigned a given address space to the victim.

The communications between a SENSS client and a SENSS
server are secured using TLS [7], and occur via HTTPS. The victim
uses the public key from the proof of prefix ownership in the TLS
key exchange process.

If the private key corresponding to the proof of prefix ownership
gets compromised, the attacker could control all of the victim’s in-
bound traffic. To reduce the risk of this, the SENSS client would
issue the abort message to all SENSS servers as soon as it becomes
aware of the compromise. This message, when successfully authen-
ticated, purges all traffic/route rules for the given prefix at a given
SENSS server, and the server removes all corresponding rules from
the routers. The SENSS server also blacklists the public key, which it
used to authenticate the message. This stops the use of the stolen key.
The SENSS client can access SENSS servers again when it acquires
a new certificate. The reverse scenario, where the attacker issues
the abort message using a stolen private key, gives no advantage to
attacker. It cuts the attacker off SENSS, while the client can still
access it using its new certificate.

Robustness and SENSS proxy: During attacks, the victim’s net-
work may become unable to receive replies from SENSS servers.
The victim can outsource its decision making power, along with its
customized mitigation programs, to a SENSS proxy — a machine in
a different ISP, e.g., a public cloud, that will act as SENSS client.
The victim may set up one or several proxies, prior to any attack, as
a backup service. The victim generates a prefix-ownership certificate
for the proxy using its private key, binding the proxy’s public key
with one or more of the victim’s prefixes.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

The proxy monitors the victim’s service availability, e.g. by pe-
riodically issuing requests for some public service offered by the
victim. When the availability declines, the proxy starts attack mit-
igation. If the victim has information about the attack (e.g., type,
TCP/IP header signature) it can communicate it to proxy using
one-way messages, e.g., using DOTS [23] or custom UDP. These
messages carry a unique ID to avoid replay, and are encrypted by a
key shared between the victim and the proxy. The proxy waits for
the signature for some limited time. If the signature is received, the
proxy activates the custom program for handling flood with signa-
ture. Otherwise, it activates the the custom program for handling
flood without signature. The proxy includes both its and the victim’s
original certificate in the SENSS messages it sends. The SENSS
server validates the certificates by validating the entire certificate
chain.

Some victims may not be sufficiently technically savvy to detect
attacks or make mitigation decisions. These victims can offload their
attack mitigation to their first-hop ISP or to a cloud-based DDoS
defense, by creating a SENSS proxy there.

An attacker could target a SENSS server to disable its operation.
An ISP can replicate SENSS server functionality for robustness, just
as it is done today with other services.

Handling Misbehavior:
SENSS clients have low incentive to misbehave. Clients are un-

likely to send excessive requests to the server because they need to
pay for each request. SENSS security mechanisms further ensure
that client actions only affect traffic and routes to their own prefixes.
However, a SENSS ISP cannot check if a victim is under attack,
and it does not need to. Any network can use SENSS to require its
traffic and routes to be handled in certain way by upstream ISPs,
even when it is not under attack. It is up to ISPs to set the pricing
scheme in such a way to fully recoup their costs of running SENSS,
and to discourage excessive messages.

SENSS servers could lie about their observations or fail to im-
plement control actions, for which they have charged the victim. In
replies to traffic_queries a SENSS server may claim that it sends or
receives more or less traffic than it does, and it may report a fake dis-
tribution of traffic over real or fake tags. In replies to route_queries
a SENSS ISP may make up AS path segments. Table 3 lists all the
possible ways a server may lie in its reports (column 2), and the
wrong decisions the victim may make (column 3).

The overall effect that a lying server has on SENSS operation
falls into only two categories: Legacy or Dropper. A Legacy liar has
no effect on victim’s traffic, but the victim pays for its reports. For
example, if a SENSS server lies about its traffic to make it smaller,
its effect is that of a legacy ISP. Legacy liars prolong the attack
mitigation and make it more costly for the victim, but they cannot
make the victim drop legitimate traffic, postpone attack mitigation
indefinitely or influence victim’s actions at other ISPs. A Dropper
liar can drop some victim’s traffic due to its lying, e.g., through the
victim installing unnecessary filters at the lying ISP. For example,
if a SENSS server reports a higher traffic on its links, it may create
a dropper effect. Dropper liars are already on the data path and can
drop traffic even without SENSS, so SENSS does not make the
situation any worse.

Attack Message (Lie) Action, effect at liar
Flood w and w/o sig TR (IN < Actual) No filter, Legacy

TR (IN > Actual) Filter, Dropper
Reflector None
Cross-fire TR (OUT = IN) None, Legacy
Cross-fire TR (OUT > Actual) Demote larger seg., Legacy

RR (fake seg.) Demote fake seg., Legacy
TR (fake seg.) Demote fake seq., Legacy

Table 3: Lying ISP scenarios and their effect (TR: traffic query reply,
RR: route query reply)

A server may fail to render the requested services, but still charge
the victim for them, thus increasing own profits. A server could
also extort the victim by dropping its traffic and then charging for
diagnosis and mitigation. Both of these attacks are made possible by
SENSS, because it allows the ISPs to charge victims when handling
SENSS requests. While we cannot prevent these attacks, we sketch
here how a victim can build a reputation score for each server, and
use it to avoid underperforming or extortionist servers. The victim
can monitor the effect of each control message by measuring the
traffic it receives after the message was accepted and processed by a
SENSS server. Control messages, which fail to reduce attack traffic
would indicate underperforming servers. The victim can use each
instance of underperformance to internally assign some bad repu-
tation points to the given SENSS server. After a while these would
accrue, allowing the victim to identify and avoid such servers in
the future. Similarly, the victim can detect Dropper ISPs by running
our client program for cross-fire handling. If a given AS is a part of
the bottleneck segment, the victim can assign some bad reputation
points to this AS. When the reputation declines significantly, the
victim can conclude that that AS is a Dropper ISP and the victim
can use SENSS to demote routes containing this AS.

4 EVALUATION
In this Section we first evaluate SENSS’s effectiveness in sparse
deployment, using a simulation. We use an AS-level simulator of the
Internet, developed in Perl. We first illustrate how SENSS would help
in an attack scenario similar to the 2016 attack on Dyn [35]. We then
evaluate SENSS’s effectiveness in sparse deployment and show that:
(1) direct customers of SENSS ISPs have immediate benefits and
are fully protected against direct floods and reflector attacks – this is
an excellent deployment incentive for ISPs, (2) strategic deployment
at 0.1–0.8% of all ISPs (0.3–3% of transit ISPs) protects everyone
against 90% of floods, and (3) SENSS outperforms cloud-based
DDoS defenses, saving 2–4 times more bandwidth.

We next evaluate SENSS’s response speed, scalability and over-
head, using a SENSS prototype on the DeterLab testbed [2], in the
186-switch, Cogent topology from TopologyZoo. SENSS’s message
processing delay scales linearly with the number of switches and
concurrent requests and it is 0.05–0.25 seconds per request.

In this section we use AS and ISP terms interchangeably, for
simplicity.

4.1 Evaluation Methodology
Simulation methodology. For our effectiveness tests, we infer
AS-level topology and routing from CAIDA’s [5] AS relationships

SENSS Against Volumetric DDoS Attacks ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

uni-dir-single
real-dir-single

uni-dir-multi
real-dir-multi

uni-remote
real-remote

(a) Flood w sig and reflector – top

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

uni-dir-single
real-dir-single

uni-dir-multi
real-dir-multi

uni-remote
real-remote

(b) Flood w/o sig – top

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

uni-all real-all

(c) Cross-fire – top

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

dir-single dir-multi remote

(d) Flood w sig and reflector – random

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

dir-single dir-multi remote

(e) Flood w/o sig – random

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

%

a
tt
a
c
k

f
lte
re
d

% transit ASes deploying SENSS

all

(f) Cross-fire – random

Figure 5: DDoS attack filtered, versus the percentage of transit ASes deploying SENSS, given the top and the random deployment
strategy.

dataset, from May 1st, 2017. There are 57,552 ASes, 114,018 customer-
provider links and 133,795 peer-to-peer links. Routing is inferred
using the no-valley, customer-prefer approach [9].

In each attack instance we deploy SENSS on some ASes, follow-
ing one chosen deployment strategy, and we simulate legitimate and
attack traffic flows as aggregates on inter-AS links. We simulate just
the aggregate rate of each flow and not its packets, nor details (e.g.,
source and destination addresses, ports or transport protocol). When
we simulate flood w sig, we assume that attack traffic is so different
from the legitimate traffic, that it is possible to devise a header-level
signature for its filtering. Installing a filter on some SENSS ISP in
the simulation of flood w sig only removes attack traffic going to
the victim. When we simulate flood w/o sig, we assume that attack
and legitimate traffic are so similar that no header level signature is
possible. Installing a filter on some SENSS ISP in the simulation
of flood w/o sig removes both legitimate and attack traffic going to
the victim. We measure the amount of legitimate and attack traffic
dropped and the bandwidth consumed by the attack on inter-AS
links. We perform 1,000 random trials for each data point and show
the median (lines) and 25th and 75th percentile (errorbars).

Emulation methodology. For our evaluation of response speed,
scalability and overhead we have developed a SENSS prototype,
including client and server functionalities, and the client customiza-
tion programs described in this paper. We deployed our prototype
on the DeterLab testbed [2] and measured the time it takes to serve
a SENSS request under many concurrent requests. We replicated
the Cogent topology (186 nodes) from the Topology Zoo[18]. On

each node we ran Quagga as router software and Open vSwitch as
the SDN software. We used RYU as the SDN controller. There was
one SENSS server in the topology. For control plane requests, it
connected to the Quagga software on switches via telnet, and for
data plane requests it sent OpenFlow messages. We emulated large,
100 ms, end to end propagation delays between the SENSS server
and each victim.

On the Cogent topology we use gravity model [30] to emulate
legitimate and attack traffic. We generate legitimate traffic using
iPerf (TCP mode) and attack traffic using a custom tool to generate
UDP flood. We generate sufficient legitimate traffic to fill a 1 Gbit
link from our victim to the ISP and then launch the attack.

4.2 2016 attack on Dyn
We reproduce the attack on Dyn in 2016 by reproducing locations
of Mirai bots, using bot IP addresses from [24]. We divide 1.2 Tbps
equally among bots, then allocate each bot to its AS, based on the
bot’s IP address. We use 7015 and 13977 as victim ASes for Dyn.
We then strategically deploy SENSS on only four ASes, which are
close to Dyn and on path between most Mirai bots and Dyn. These
are AS 174 (Cogent), 3356 (Level 3), 6461 (Zayo Bandwidth) and
7922 (Comcast). With that deployment, and if attack signature were
possible, SENSS would filter 100% of the attack traffic with only
four filtering rules (one per ISP). Cogent filters 56% of the attack,
and Zayo filters 40%, so even two SENSS ISPs would filter almost
all the attack.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

We also consider the case when attack signature is not possible.
We simulate legitimate traffic to Dyn by assuming that it flows
mostly from large US connectivity providers. We extract the top
10 providers from a 2017 survey [3], and simulate legitimate traffic
proportionally to each provider’s number of customers. Using α=5%,
SENSS filters 99% of traffic to AS 13977, and 90% of traffic to AS
7015. This requires around a 1,000 filtering rules, with 60% being at
Cogent and 40% being at Level 3, one rule per POP.

4.3 Effectiveness in Sparse Deployment
We now investigate how deployment strategy and the number of
deployment points influence effectiveness. We investigate two de-
ployment strategies. In top strategy, we deploy SENSS at the top
N = (1...10, 000) ASes, ordered in decreasing order by their cus-
tomer cone size. In random strategy, we deploy SENSS at the ran-
dom N = (1...10, 000) ASes. In both cases, we only consider deploy-
ment at ASes that have at least one customer link, i.e. transit ASes.
There are 13,123 such ASes in our topology – 23% of all ASes.

Uniform traffic: Since we cannot anticipate where the attack-
ers, legitimate clients and the victim may reside, we deploy them
at random. We first randomly select a victim, and then randomly
select 1,000 ASes to host attackers and the additional 1,000 ASes to
host legitimate clients. We distribute attack/legitimate traffic equally
among attackers/legitimate clients.

Realistic traffic: We randomly select a victim but distribute at-
tackers at Mirai bot locations, and legitimate clients at large US
residential ISPs, as we have done in Section 4.2. We show results
only for the top deployment, because the random deployment results
do not change with traffic distribution.

We show the median percentage of attack traffic filtered, for flood
w sig and reflector attacks (Fig 5(a) and 5(d)), flood w/o sig (Fig
5(b) and 5(e)), and for cross-fire (Fig 5(c) and 5(f)). For flood w/o
sig we use α = 5%. Other values of α lower SENSS’s effectiveness
for small number of deployment points (up to 1,000 ASes) by up
to 50%, and we omit them for space reasons. They have no effect
for deployments higher than 1,000. For flood w and w/o sig and for
reflector attacks we show separately the benefits to direct customers
of the SENSS-deploying ISP, and to remote victims that may request
SENSS services when under attack. Cross-fire creates disturbance
far from the attack’s victim, and we show benefit to all ASes.

Flood w sig and reflector attacks. In case of these attacks, our
results are consistent for both uniform and realistic traffic patterns.
Direct, single-homed customers of SENSS ISPs receive almost total
protection at all times, both in top and in random deployments, and
under both uniform and realistic traffic.

Direct, multi-homed customers receive lower protection than
single-homed, because some of their traffic traverses non-SENSS
ISPs. During an attack, a multi-homed victim could temporarily
become single-homed, to increase its protection. It could do so by
selectively announcing its prefixes only to SENSS ISPs.

Remote ASes that request SENSS services (aka “remote cus-
tomers”) receive protection only after a certain number of deploy-
ment points is reached. This is where top deployment is vastly supe-
rior to random. Deployment at only 0.7% top ASes achieves 90%

��

���

���

���

���

����

������ ����� ���� �� ��� ����

�
�
�
��
�
�
�
�
�
�
�
�
�
��
��

�
�
�
�
�
�

������������������������������

����������
������

�������
������

���������
�����

(a) Flood w sig – top

��

���

���

���

���

����

������ ����� ���� �� ��� ����

�
�
�
��
�
�
�
�
�
�
�
�
�
��
��

�
�
�
�
�
�

������������������������������

����������
������

�������
������

���������
�����

(b) Flood w sig – random

Figure 6: Comparison of SENSS versus several cloud-based
DDoS defenses, with regard to bandwidth consumed by attack.

protection for remote customers. On the other hand, 64% of ran-
domly chosen ASes must deploy SENSS to achieve 90% protection
for remote customers.

Flood w/o signature. In this simulation we assume that SENSS
deploys coarse-grained rules, filtering all traffic flowing to the at-
tack’s victim at select filter locations. For uniform traffic pattern,
SENSS needs large deployment for effective attack mitigation. This
is because SENSS must filter close to attack sources to meet the
requirement for collateral damage (controlled by α = 5%). At small
deployment, SENSS either misses some attack, or its filters would
cause too high collateral damage. Deployment at 1.5% top ASes
is needed to achieve more than 90% protection for direct, single-
homed customers and deployment at 3.8% top ASes is needed for
90% protection for direct, multi-homed and remote customers. Ran-
dom deployment does much worse against flood w/o sig, where 70%
deployment is needed for 90% protection for everyone.

For realistic traffic patterns, SENSS is very effective for direct,
single-homed customers, even with 1–10 deployment points (0.01–
0.1 on x-axis). This is similar to our result for the 2016 Dyn attack.

Cross-fire attacks. Results are similar for both traffic patterns.
Top deployment again vastly outperforms random deployment. De-
ployment at the top 1% of ASes can mitigate 90% of cross-fire
attacks, while 66% of randomly selected ASes must deploy SENSS
to achieve the same effectiveness.

SENSS Against Volumetric DDoS Attacks ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Cloud ASes Providers Peers Avg. AS-path length
CloudFlare 7 41 185 3.2

Google 20 12 187 2.8
Akamai 38 374 199 3.5

Incapsula 1 69 130 3
Zenedge 1 14 0 4

Table 4: Providers and peers of select clouds, which we use in
our evaluation.

4.4 Comparison of SENSS and Cloud Defenses
In this section we compare SENSS’s performance to that of clouds,
with regard to bandwidth saved during an attack. We assume the
same kind of filtering deployed by SENSS and clouds, to isolate
the effect of deployment points. This evaluation shows that on-path
deployment is superior to the case when traffic is diverted to a cloud.

We first calculate the amount of bandwidth consumed by attack
traffic on inter-AS links, as follows. For each of our effectiveness
scenarios (Section 4.3) whenever an attack flow crosses an inter-AS
link we add its volume to the total consumption. We assume a perfect
defense, which drops all attack traffic when it reaches the defense.
The difference between bandwidth consumption without and with
defense becomes the saved bandwidth. We report it as percentage
of the attack bandwidth when there is no defense. An ideal defense
would save close to 100% of the bandwidth because it would be
deployed close to the sources.

We select five clouds to compare to, which currently offer DDoS
defense – CloudFlare, Google, Akamai, Incapsula and Zenedge.
While we do not know their peering agreements, we can easily
find out their AS ownership from public records. We then obtain
peering for those ASes from the CAIDA’s AS-level topology. When
a cloud owns multiple ASes, we assume that all such ASes deploy
the defense. Table 4 shows the number of ASes each cloud owns
in our topology, number of providers and peers in our AS topology,
and the average AS path length from all other ASes to the cloud.

Figure 6(a) shows the saved bandwidth under top SENSS deploy-
ment (median shown with line and 25% and 75% with errorbars),
and Figure 6(b) shows it under random SENSS deployment, for flood
w sig attack. In both Figures we also show with colored horizontal
bars 25% and 75% of bandwidth consumption when the victim is
defended by clouds, and the lines show the median of the same mea-
sure. Intuitively, bandwidth savings will be largest when attack is
filtered close to its sources. There are significant differences among
cloud defenses – ranging from 13% bandwidth saved by Zenedge to
38–46% by Google. These differences occur because some clouds
have long AS paths (e.g., Zenedge), i.e., they are far from sources,
while others (e,g,. Google) have short paths. SENSS outperforms all
clouds after 0.4% of top transit ASes (52 ASes, on par with Google’s
and Akamai’s AS count) or after 15% of random transit ASes deploy
SENSS. This is because SENSS’s on-path defense stops the attack
closer to its sources, than when attack traffic must be diverted to
clouds.

4.5 Delay, Traffic and Message Cost
All communication between a SENSS client and a SENSS server
occurs in one session, over SSL. It takes two round-trip times for
SSL establishment. After this, the client would send a query and

wait for a reply. Finally it may send a control message to the server
to mitigate attacks. Each of the four attack types we studied require
1–3 messages per SENSS ISP for mitigation.

The client can strike the balance between achieving a fast response
(ask all SENSS servers for help) and saving money (ask servers one
by one). The client can first communicate with Tier-1 and Tier-2
ASes simultaneously, and then switch to iterative communications.
This yields on the average 10-second delay, and 300–400 messages
for full mitigation.

When using SENSS to mitigate floods w/o sig, the victim must
periodically issue traffic queries to learn legitimate traffic distribu-
tion, and identify links that carry a lot of legitimate traffic. During
attacks the SENSS client uses its most recent observation to esti-
mate collateral damage for a given filter deployment. More frequent
queries increase message cost but may reduce collateral damage if
traffic fluctuates a lot. We investigated the impact of query period on
collateral damage, by replacing legitimate traffic in our effectiveness
experiments by traffic volumes and destinations obtained from 24
hours of traffic logs from a large US CDN. We calculated traffic
volumes per each minute in the logs and used earlier observations
to make SENSS decisions about filter locations, then used later ob-
servations to estimate collateral damage. We summarize results of
this experiment: (1) observation periods of up to 12 h only slightly
increase collateral damage over the ideal case, when we observe
immediately prior to attack, (2) filtering at large ASes has higher
fluctuation of collateral damage, due to higher traffic aggregation,
than filtering at smaller ASes.

4.6 Scalability within an ISP
SENSS functionalities in switches are implemented on the fast path,
and incur no per-packet overhead. Further, each SENSS request
results in one rule per switch. In our emulation experiments it took
only 0.15 sec to handle a single traffic_query and 0.26 sec to handle
a route demote. This includes the propagation delay between the
victim and the SENSS server (0.05 sec), RPKI validation (0.02 sec),
and SENSS processing of the query (0.03 sec). When handling 100
concurrent requests, it took 4.32 s to fully serve traffic_queries, and
24.95 s to serve route_queries followed by demote messages. The
delay mostly comes from the concurrent telnet requests to switches,
and can be further reduced if we parallelize this communication.

In Figure 7 we illustrate one experiment when flood w/o sig attack
is handled by SENSS. The SENSS client at the victim uses our client
program from Section 3.4 for handling floods w/o sig. This includes
two types of SENSS messages: a traffic_query and a filter. The attack
is fully handled within 7 seconds.

5 CONCLUSION
Volumetric DDoS attacks cannot be handled by the victim, because
they usually create congestion upstream from the victim. We have
proposed SENSS – a framework for collaborative diagnosis and
mitigation of volumetric attacks. SENSS’s simple but powerful inter-
faces enable victim-customized solutions to several DDoS variants.
SENSS mitigates attacks instead of withstanding them. SENSS is
implementable in today’s ISPs with SDN, it is very effective in
sparse deployment, much faster than manual inter-AS collaboration,

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Sivaramakrishnan, Jelena Mirkovic, Minlan Yu, and Ying Zhang

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20 25 30 35

S
p
e
e
d
 i
n
 M

b
p
s

Time in Seconds

Legitimate Traffic Measured
Attack Traffic Measured

Figure 7: SENSS client using our client program to mitigate floods w/o
signature attack.

and has small message overhead. We hope that these good features
will encourage its wide adoption.

6 ACKNOWLEDGEMENT
This project is the result of funding provided by the Science and
Technology Directorate of the United States Department of Home-
land Security under contract number D15PC00184. The views and
conclusions contained herein are those of the authors, and should
not be interpreted necessarily representing the official policies or
endorsements, either expressed or implied, of the Department of
Homeland Security or the US Government. Authors are grateful to
anonymous reviewers for their helpful comments.

REFERENCES
[1] Katerina Argyraki and David R. Cheriton. 2005. Active Internet Traffic Filtering:

Real-time Response to Denial-of-service Attacks. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (ATEC ’05). USENIX
Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=
1247360.1247370

[2] R. Bajcsy, T. Benzel, M. Bishop, B. Braden, C. Brodley, S. Fahmy, S. Floyd,
W. Hardaker, A. Joseph, G. Kesidis, K. Levitt, B. Lindell, P. Liu, D. Miller,
R. Mundy, C. Neuman, R. Ostrenga, V. Paxson, P. Porras, C. Rosenberg, J. D.
Tygar, S. Sastry, D. Sterne, and S. F. Wu. 2004. Cyber Defense Technology
Networking and Evaluation. Commun. ACM 47, 3 (March 2004), 58–61. http:
//doi.acm.org/10.1145/971617.971646

[3] Sean Bakley. 2017. From Comcast to Hawaiian Telcom: Tracking the top 16
residential broadband service providers in Q3 2017. FierceTelecom, https://goo.
gl/otRTw2.

[4] Cristina Basescu, Raphael M. Reischuk, Pawel Szalachowski, Adrian Perrig, Yao
Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei Urakawa. 2015. SIBRA:
Scalable Internet Bandwidth Reservation Architecture. CoRR abs/1510.02696
(2015).

[5] CAIDA. 2017. The CAIDA AS Relationships Dataset, May 01, 2017. http:
//www.caida.org/data/as-relationships/.

[6] CloudFlare. 2018. CloudFlare Web page. https://www.cloudflare.com/.
[7] Tim Dierks and Eric Rescorla. 2008. Rfc 5246: The transport layer security (tls)

protocol. The Internet Engineering Task Force 3 (2008).
[8] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bo-

hatei: Flexible and Elastic DDoS Defense. In 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, Washington, D.C., 817–832.

[9] Lixin Gao. 2001. On inferring autonomous system relationships in the Internet.
IEEE/ACM Transactions on Networking 9, 6, 733–745.

[10] Michael T. Goodrich. 2008. Probabilistic Packet Marking for Large-scale IP
Traceback. IEEE/ACM Transaction on Networking 16, 1 (February 2008), 15–24.
https://doi.org/10.1109/TNET.2007.910594

[11] MAWI group. 2017. MAWI Working Group Traffic Archive. http://mawi.wide.ad.
jp/mawi/.

[12] John Ioannidis and Steven M. Bellovin. 2002. Implementing Pushback: Router-
Based Defense Against DDoS Attacks. In Proceedings of the Network and Distri-
buted System Security Symposium, NDSS 2002, San Diego, California, USA.

[13] Michael G. Kallitsis, Stilian Stoev, Shrijita Bhattacharya, and George Michailidis.
2015. AMON: An Open Source Architecture for Online Monitoring, Statistical
Analysis and Forensics of Multi-gigabit Streams. CoRR abs/1509.00268 (2015).

[14] Min Suk Kang, Virgil D. Gligor, and Vyas Sekar. 2016. Defending Against
Evolving DDoS Attacks: A Case Study Using Link Flooding Incidents. In Security
Protocols Workshop (Lecture Notes in Computer Science), Vol. 10368. Springer,
47–57.

[15] Min Suk Kang, Virgil D. Gligor, and Vyas Sekar. 2016. SPIFFY: Inducing Cost-
Detectability Tradeoffs for Persistent Link-Flooding Attacks. In 23rd Annual
Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016.

[16] M. S. Kang, S. B. Lee, and V. D. Gligor. 2013. The Crossfire Attack. In 2013
IEEE Symposium on Security and Privacy. 127–141.

[17] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah, and H. J. Chao. 2006.
PacketScore: a statistics-based packet filtering scheme against distributed denial-
of-service attacks. IEEE Transactions on Dependable and Secure Computing 3, 2
(April 2006), 141–155.

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications 29, 9
(October 2011), 1765–1775.

[19] Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor. 2013. CoDef: Collabora-
tive Defense Against Large-scale Link-flooding Attacks. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technologies
(CoNEXT ’13). ACM, New York, NY, USA, 417–428. http://doi.acm.org/10.
1145/2535372.2535398

[20] Xin Liu, Xiaowei Yang, and Yanbin Lu. 2008. To Filter or to Authorize: Network-
layer DoS Defense Against Multimillion-node Botnets. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication (SIGCOMM ’08). ACM,
New York, NY, USA, 195–206. http://doi.acm.org/10.1145/1402958.1402981

[21] MANRS. 2018. MANRS for Network Operators. https://www.manrs.org/manrs/.
[22] P Marques, N Sheth, R Raszuk, B Greene, J Mauch, and D McPherson. 2009.

Dissemination of Flow Specification Rules. RFC 5575.
[23] Andrew Mortensen, Flemming Andreasen, Tirumaleswar Reddy, Christopher

Gray, Rich Compton, and Nik Teague. 2018. Distributed-Denial-of-Service
Open Threat Signaling (DOTS) Architecture. Internet-Draft draft-ietf-dots-
architecture-07. Internet Engineering Task Force. https://datatracker.ietf.org/
doc/html/draft-ietf-dots-architecture-07 Work in Progress.

[24] 360.com NetLab. 2017. A quick stats on the 608,083 Mirai IPs that hit our
honeypots in the past 2.5 months. https://goo.gl/NYWMLq.

[25] Arbor Networks. 2018. DDoS Protection by Arbor Networks APS. https://www.
arbornetworks.com/ddos-protection-products/arbor-aps.

[26] George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. 2006. A
Framework for a Collaborative DDoS Defense. In ACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference. IEEE Computer
Society, 33–42.

[27] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-time.
Comput. Netw. 31, 23-24 (December 1999), 2435–2463. http://dx.doi.org/10.
1016/S1389-1286(99)00112-7

[28] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent Chuat.
2017. The SCION Architecture. Springer International Publishing, Cham. 17–42
pages. https://doi.org/10.1007/978-3-319-67080-5_2

[29] Steve Ranger. 2018. GitHub hit with the largest DDoS attack ever seen. ZD-
Net,https://goo.gl/BmqekG.

[30] Matthew Roughan. 2005. Simplifying the Synthesis of Internet Traffic Matrices.
SIGCOMM Comput. Commun. Rev. 35, 5 (October 2005), 93–96. https://doi.org/
10.1145/1096536.1096551

[31] The New York Times. 2013. How the Cyberattack on Spamhaus Un-
folded. http://www.nytimes.com/interactive/2013/03/30/technology/
how-the-cyberattack-on-spamhaus-unfolded.html.

[32] D. Turk. 2004. Configuring BGP to Block Denial-of-Service Attacks. RFC 3882.
RFC Editor.

[33] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott
Shenker. 2010. DDoS Defense by Offense. ACM Trans. Comput. Syst. 28, 1,
Article 3, 54 pages. http://doi.acm.org/10.1145/1731060.1731063

[34] X. Yang, D. Wetherall, and T. Anderson. 2008. TVA: A DoS-Limiting Network
Architecture. IEEE/ACM Transactions on Networking 16, 6 (Dec 2008), 1267–
1280.

[35] Kyle York. 2016. Dyn Statement on 10/21/2016 DDoS Attack. https://dyn.com/
blog/dyn-statement-on-10212016-ddos-attack/.

[36] Zenedge. 2018. Zenedge Web page. https://www.zenedge.com/.

http://dl.acm.org/citation.cfm?id=1247360.1247370
http://dl.acm.org/citation.cfm?id=1247360.1247370
http://doi.acm.org/10.1145/971617.971646
http://doi.acm.org/10.1145/971617.971646
https://goo.gl/otRTw2
https://goo.gl/otRTw2
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://www.cloudflare.com/
https://doi.org/10.1109/TNET.2007.910594
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
http://doi.acm.org/10.1145/2535372.2535398
http://doi.acm.org/10.1145/2535372.2535398
http://doi.acm.org/10.1145/1402958.1402981
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-07
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-07
https://goo.gl/NYWMLq
https://www.arbornetworks.com/ddos-protection-products/arbor-aps
https://www.arbornetworks.com/ddos-protection-products/arbor-aps
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1007/978-3-319-67080-5_2
https://goo.gl/BmqekG
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
http://www.nytimes.com/interactive/2013/03/30/technology/how-the-cyberattack-on-spamhaus-unfolded.html
http://www.nytimes.com/interactive/2013/03/30/technology/how-the-cyberattack-on-spamhaus-unfolded.html
http://doi.acm.org/10.1145/1731060.1731063
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
https://www.zenedge.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

