
Enabling SDN Experimentation in Network Testbeds

Sivaramakrishnan S R
Jelena Mirkovic

USC
{satyaman, mirkovic}

@usc.edu

Pravein G Kannan
Chan Mun Choon
National University of

Singapore
{pravein, chanmc}

@comp.nus.edu.sg

Keith Sklower
UC Berkeley

sklower@cs.berkeley.edu

ABSTRACT
Software-defined networking (SDN) has become a popular
technology, being adopted in operational networks and being
a hot research topic. Many network testbeds today are used
to test new research solutions and would benefit from offer-
ing SDN experimentation capabilities to their users. Yet, ex-
posing SDN to experimenters is challenging because experi-
ments must be isolated from each other and limited switch
resources must be shared fairly. We outline three differ-
ent approaches for exposing SDN to experimenters while
achieving isolation and fair sharing goals. These solutions
use software implementation, shared hardware switches and
smart network interface cards to implement SDN in tes-
tbeds. These approaches are under development on two op-
erational SDN testbeds: the DeterLab at USC/ISI/Berkeley
and the NCL testbed at the National University of Singa-
pore.

Keywords
SDN; network testbeds; sharing

1. INTRODUCTION
Software Defined Networking is widely used in datacen-

ter networks [1, 2] and at Internet exchange points [3]. A
key component of SDN involves the separation of the data
plane and the control plane. The control plane is shifted
to a centralized controller, which is responsible for system
configuration, management, and exchange of routing table
information between switches.

SDN is a hot research topic today, drawing attention from
top network, security and systems conferences and several
newly-formed workshops. But today’s SDN experimenta-
tion resources are very limited. Often, experiments with
SDN use a single machine with virtualization of nodes and
controllers [4]. Users are restricted by limited applications
supported on virtualized nodes or by the number of possible
nodes packed in a given system. Another common approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’17, March 22-24, 2017, Scottsdale, AZ, USA
c© 2017 ACM. ISBN 978-1-4503-4908-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3040992.3040996

involves researchers purchasing one or a few SDN-enabled
switches and configuring their own testbed in a lab. Yet,
SDN switches are expensive and few researchers have neces-
sary funds for a large testbed.

Today, there are many free, public research testbeds, used
for experimentation in networks and distributed systems.
These testbeds could be extended to support SDN-based
experimentation, but this brings challenges, specifically re-
lated to sharing of SDN resources. In this paper we explore
possible implementation techniques for SDN experimenta-
tion on testbeds. Mainly, we present three approaches – one
software-based approach and two hardware-based – to im-
plement SDN in testbeds. We consider various challenges
faced while implementing some of these techniques on two
operational testbeds – the DeterLab at USC/ISI/Berkeley
and the NCL testbed at the National University of Singa-
pore.

2. RESEARCH TESTBEDS
Research testbeds provide unique opportunities to resea-

rchers to access large-scale, high-end resources for free, thus
promoting diversity and equal opportunity in networking
and systems research. Many research testbeds exist today.
Some of them are public – accessible by any researcher –
like Emulab [5], DeterLab [6], Planetlab [7] and GENI [8].
Others are institutional or national testbeds, like the NCL
testbed [9], accessible only within a given country or the
hosting institution. While the primary goal of these testbeds
is to support research, they are increasingly being used in
education to provide practical experiences to students in ar-
eas such as networking, security and distributed systems.

We now provide more details about two operational te-
stbeds that we are affiliated with: the DeterLab testbed
and the NCL testbed. Both testbeds contain some number
of user-accessible nodes that can run a custom OS. These
nodes are connected to switches, which enables them to talk
to each other. A user obtains exclusive access to multiple
nodes, with superuser privileges, and can request the nodes
to be connected into a custom topology. Multiple exper-
iments and multiple users can share the testbed but each
node is a part of only one experiment. Further, multiple
experiments can use nodes connected to the same switch.
Thus care must be taken to isolate experiments from each
other, and to protect the switch from experimental traffic.

2.1 DeterLab Testbed
DeterLab [6] is a state-of-the-art scientific computing fa-

cility for cyber-security researchers engaged in research, de-

ISI

Control switchExp. switch
1 x 10 G2-4 x 10 G

Control switchExp. switch
1 x 1 G2-4 x 1 G

Control switchExp. switch
1 x 1 G2-4 x 1 G

10 G

160 G 160 G

10 G

10 G

40 G

10 G 10 G

10 G

10 G10 G

10 G 10 G

10 G10 G
10 G

40 G

20 G 20 G

10 G

USCBerkeley

170 nodes

180 nodes

330 nodes

Provisioning
Server
(boss)

Storage
Server
(users)

10 G 10 G

Figure 1: Architecture of the DeterLab Testbed

24 nodes
Rack n

Edge switches

Provisioning
Server
(boss)

Storage
Server
(users)

2 x 10 G 2 x 10 G

IRF

IRF

Network
Hypervisor
(OpenVirteXNCL)

Control
Switch

Expt
Switch

SDN
Switch

24 nodes
Rack 1

...

Control
Switch

Expt
Switch

SDN
Switch

2 x 1 G 2 x 10 G 1 x 1 G 2 x 1 G 2 x 10 G 1 x 1 G

2 x 10 G 2 x 40 G 1 x 10 G2 x 10 G 2 x 40 G 1 x 10 G

4 x 40 G 2 x 10 G

Figure 2: Architecture of the NCL Testbed

velopment, discovery, experimentation, and testing of inno-
vative cyber-security technology. It is hosted at the The In-
formation Sciences Institute, of the University of Southern
California Viterbi School of Engineering (ISI) and Univer-
sity of California at Berkeley (Berkeley). In 12 years of its
existence DeterLab has been used by 316 research projects,
from 241 institutions (202 locations and 40 countries) and
involving 862 researchers. Since 2009, DeterLab has been
extensively used in education as well. It has been used by
157 classes, from 103 institutions and involving 9,893 users.

DeterLab consists of almost 700 nodes housed at three
locations: USC, ISI and Berkeley. Each enclave connects
to others via the public, 10 Gb Internet. A high-level ar-
chitecture of the testbed is shown in Figure 1. There are
two distinguished service nodes, called Boss and Users in
the testbed, which offer provisioning and storage services,
respectively. Each node has one control and several (2-4)
network interfaces that connect to one or several of switches.
Isolation between experiments at the experimental and the
control network is achieved through VLAN-based isolation.

Custom Controlnet-Isolation (CI) software runs on the boss
to enforce this. The CI software ensures that each node
can only send traffic to other nodes in the same experiment.
However, traffic sent to the control network gets broadcast
to the boss and users nodes and may overwhelm them or
exhaust the share network’s bandwidth.

2.2 NCL Testbed
The National Cybersecurity Research & Development Lab-

oratory (NCL) [9] is a national shared infrastructure funded
by the National Research Foundation (NRF) of Singapore
that provides computing resources, repeatable and control-
lable experimentation environments, as well as application
services.

In order to better support user experiments, NCL aims to
provide tools/libraries for common vulnerabilities and expo-
sure (CVE) environments, blockchain environment and algo-
rithm validation and SDN provisioning. The NCL testbed
provides an isolated environment for conducting security/
networking experiments. The experiment nodes are split
into clusters of 24 nodes each. Each node is connected to
three switches: (1) control switch, (2) experiment switch,
and (3) SDN switch. The control switch connection enables
loading of images and management of testbed experiments.
The experiment and the SDN switches are used to build con-
nections between nodes in an experimental topology. Isola-
tion of the experiments is done using the VLAN mechanism
for the control/ experiment network similar to DeterLab [6].
We explain the methodology of provisioning SDN experi-
ments in Section 3.2.2.

3. SDN IN TESTBEDS
There are several methods of implementing SDN in tes-

tbeds. We look into some of these methods next.

3.1 Software SDN: Open vSwitch
A possible execution of SDN testbed is having dedicated

nodes which run software switches such as Open vSwitch[10].
Here, the user’s topology consists of physical nodes which are
knit together with dedicated nodes running Open vSwitch.

Figure 3: Node 2 sends traffic to Node 1 via an
unconfigured Open vSwitch which drops all traffic
causing ARP flooding to the control network of the
testbed.

Since these are software switches running on the user’s re-
served nodes, the user has complete control over the switch
and an exclusive access to it. The user can control the rule
space on these switches using controller without affecting
other experiments in the testbed.

Though this method isolates the experiment, incorrect im-
plementation of Open vSwitches can affect the entire testbed.
In Figure 3 two nodes are connected via an Open vSwitch.
A naive user experimenting with this setup may not set the
appropriate rules in Open vSwitch for connecting nodes over
the experimental network. When such a user tries to reach
node2 from node1, Open vSwitch will send ARP packets on
experimental interfaces. If such interfaces span two or more
enclaves, the Internet link between them may get flooded.
On the other hand, if an experimental node generates traffic
for an IP that is not assigned to an experimental interface
(e.g., a public IP), Open vSwitch will send ARP requests on
the control network, flooding this shared resource.

Moreover, performance of software switches are limited.
Software switches are designed to work on commodity ma-
chines which do not have the necessary hardware for fast
packet processing and thus underperform at this operation,
compared to a hardware switch.

3.2 Switches with SDN
Another approach to implement SDN in testbeds is to

use hardware switches, which support SDN. These hardware
switches are designed to process traffic at a high rate, and
can offer high performance to users. Given that these hard-
ware switches are capable of supporting multiple nodes at
the same time, there may be multiple users using the switch
at any given time. This leads to new challenges for resource
allocation and isolation. We must ensure that users can only
install SDN rules about nodes and links in their own exper-
iment and may not observe nor control other experiments.
We further must ensure that users cannot accidentally or
maliciously affect the performance of the switch. Finally,
we want to achieve fair sharing of limited switch resources –
the rule space tables and the bandwidth. We now describe
our initial work in this space, which we are exploring on the
DeterLab and the NCL testbed.

3.2.1 DeterLab Approach
A primary component of approach taken at the Deter-

Lab testbed is the SDN service, similar to the Controlnet-

Isolator, which assists in setting up the SDN experiment and
monitoring it afterwards. The SDN service runs on the boss
node and proxies all OpenFlow requests. We now explain
how creation, starting, and operation of an SDN-enabled
experiment work in this paradigm.

Creating an Experiment: The user creates an experi-
ment (SDN or regular) by specifying the required topology
in an NS file(Network Simulator file). In the file every link
between nodes is associated with a custom, user-chosen iden-
tifier. Each link is instantiated as one or several VLANs on
one or several switches in the testbed. During experiment
initialization, DeterLab will create a mapping between the
link identifiers and the VLANs and store it in a database.
SDN experiments can use these link identifiers in OpenFlow
requests.

Starting the Experiment: After swapping in the exper-
iment, the SDN service finds a suitable IP range available
to assign to the experimental interfaces of the nodes and
the switches involved in the experiment. Since switches are
shared across different experiments, and since some Open-
Flow rules may be IP-based, it is necessary that the nodes in
one SDN experiments have unique IP addresses and subnets
at the experimental network. The SDN service proceeds
to create an OpenFlow instance on the switch associating
all VLAN’s belonging to the experiment with this instance.
The SDN service then initializes a controller on an additional
node in the experiment and binds the experiment’s Open-
Flow instance on each switch to the controller. The con-
troller receives OpenFlow requests from the user and serves
as an authenticator for the requests. Though the controller
node is associated with the experiment, the user is not given
access to the controller node. Isolation of the controller node
and having dedicated IP ranges prevents experiments from
affecting each other.

Authentication: Every request to the experiment’s con-
troller must be authenticated before accessing SDN switches
in DeterLab. The experiment’s controller authenticates re-
quests generated by user using remote procedure call to the
SDN service, which identifies the requesting user using his
testbed certificate. This authentication check ensures that
only authorized users can manipulate an experiment’s set-
tings. Next, the controller validates the user’s OpenFlow
message. The controller identifies the type of the OpenFlow
message and checks if the request arguments (link identifiers,
IP addresses) belong to the experiment. In case of messages,
which modify the switch’s rule space, the controller performs
checks on available rule space quota for the experiment. If
all the checks are passed successfully, the controller proceeds
to replace the identifier in the request with the VLAN iden-
tifier. If more than one VLAN are associated with a given
link, the message will be cloned once for each VLAN. Fi-
nally, the controller forwards the OpenFlow message to the
SDN switch. Figure 4 illustrates an SDN experiment where
the SDN Switch and two nodes are on the same VLAN. All
OpenFlow messages to the controller are authenticated and
verified for available rule space before being forwarded to
the SDN Switch. The controller supports all Openflow 1.3
messages which are forwarded to it. Unfortunately, authen-
tication and validity checks introduce overhead that would
not exist if a switch were dedicated to a single user. This
limits the performance tests that could be done with SDN,
but it is necessary to ensure safety to DeterLab’s experi-
ments. Authentication checks could be performed once per

SDN
Switch SDN

Controller

Node1 Node2

VLAN 1 VLAN 1

OpenFlow
requests

Authenticated
OpenFlow
requests

Figure 4: Testbed setup of an experiment sharing
SDN switch outside the experiment space.

experiment and results cached for use in subsequent SDN re-
quests. Validity checks require request parsing and database
lookup, and introduce sub-second delays.

Allocation of Rule Space SDN switches, which are
shared among experiments have limited rule space. Without
adopting some means of fair allocation of rule space, exper-
iments may become starved. There are three approaches
which could be adopted to allocate rule spaces to experi-
ments.

Fixed Allocation. Rule space on each switch can be allo-
cated in fixed chunks to each SDN experiment allocated to
the switch. We could project, based on usage history, the
expected number of experiments per switch and use that to
calculate the size of the fixed chunk. If we underestimate
the number of active experiments, we could refuse to al-
locate further SDN experiments to the given switch. This
policy would lead to some underutilization of rule space but
would create stable conditions for users, where rules once
inserted can only be deleted by the user.

Dynamic Allocation. Rule space on each switch can be
equally divided between active SDN experiments on that
switch. If a new experiment is swapped in, the quotas of the
existing experiments would be reduced accordingly. This
policy would lead to less amount of underutilized rule space
but would create unforeseen and uncontrollable effects on
the existing experiments. For example they could not pre-
dict the size of their quota, nor guarantee that rules they
have inserted will persist in time.

On-demand Allocation. Some experiments may not use
up the entire fair share of their rule space. It would be
possible to design a fair-sharing approach similar to those
in other resource allocation domains (e.g., fair sharing of
router queues) but this would create poor user experience.
For example, if an experiment A does not use its current
rule space and it gets re-allocated to the experiment B, if A
later wanted to insert some rules we would have to reclaim
the space from B. This would potentially lead to deletion of
rules that the user may not control, and is not user-friendly.

3.2.2 NCL Approach
In the NCL approach, we modify the topology specified

in the NS file so that we can provision SDN resources flex-
ibly, while still using the existing DeterLab’s resource al-
location algorithm [11]. SDN capability is provided to the
users’ experiments by choosing to connect them over a sepa-
rate experimental network, through SDN-enabled switches,
as shown in the Figure 2. The SDN switches are configured

to interact with a Network Hypervisor (OpenVirteX [12])
which is connected to the core switches. We have modified
the OpenVirtex to perform flow translation where we attach
a TOS bit for each tenant’s flow, and we call this new in-
stance OpenVirteXNCL (OVXN). Since, we use OVXN, the
users can use any SDN controller of their choice, and still
not interfere with each other.

In order to leverage the current DeterLab’s resource allo-
cation [11] to provision both SDN experiments and normal
experiments seamlessly, we model SDN switches in the fol-
lowing way:

1. Each SDN switch-port connected to host is defined as
a special node called ofedge, and a switch-port that is
connected to other switches is defined as ofcore. ofedge
represent host-links and ofcore represent core-links in
the topology.

2. The special node (ofedge/ofcore) consists of two virtual
ports eth0 and eth1, where eth0 is the external port
connected to the host/core, and eth1 is connected to
the SDN switch.

3. When a user specifies an SDN switch in the topology,
we automatically convert this specification into the for-
mat where we enumerate all the ports of the switch as
either ofedge/ ofcore depending on the whether the
port is connected to host/switch.

4. Also, another node is provisioned as the SDN controller
of the experiment. The SDN controller will be directly
connected to the shared OVXN node.

An example of a NS file showing two nodes connected by an
SDN switch is shown below:

set n1 [$ns node]

set n2 [$ns node]

set switch1 [$ns node]

tb-set-hardware $switch1 ofswitch

set link1 [$ns duplex-link $switch1 $n1 ...]

set link2 [$ns duplex-link $switch1 $n2 ...]

The topology spec converted into the supported format, by
our SDN-aware pre-processor looks as follows:

set n1 [$ns node]

set n2 [$ns node]

Below Auto-generated

set switch1p1 [$ns node]

tb-set-hardware $switch1p1 ofedge

set switch1p2 [$ns node]

tb-set-hardware $switch1p2 ofedge

set ofswitchswitch2 [$ns make-lan

"$switch1p1 $switch1p2" ...]

set link1 [$ns duplex-link $switch1p1 $n1 ...]

set link2 [$ns duplex-link $switch1p2 $n2 ...]

set ctrl [$ns node]

tb-set-hardware $ctrl ofcontrol

set ovxn [$ns node]

tb-set-hardware $ovxn ovxctl

set ofc-ovxlink [$ns duplex-link $ctrl $ovxn ...]

In the original NS file (given by user), we identify an
SDN switch using the hardware-type ”ofswitch”. Once a
switch is identified as SDN switch, its ports are enumerated

as switch1p1 and switch1p2. since switch1 has only two
connections in the NS files. Since both the ports are con-
nected to host, their type is ”ofedge”. Also, the host-links
are changed to link between hosts and specific ports instead
of the complete switch. Finally an SDN controller node is
reserved, and it is connected to OVXN. We do not require
that all the links in an experiment be either SDN-enabled
or regular. It is possible to have a mixture of regular and
SDN links in the same experiment.

Controller Isolation: Since OVXN (being the Network
Hypervisor) is a shared node, which is directly connected
to controllers in multiple SDN experiments, connection be-
tween the experiment’s SDN controller and OVXN is made
using VLAN in the experiment network (not SDN network).
Hence, this connection is made using assignment of VLANs
to the corresponding interfaces in the experiment network.
The OVXN’s interface to the experiment network is a trunk
port which can simultaneously have virtual links with each
SDN controller, which belong to different experiments. In
order for OVXN to communicate with each SDN controller
over a different VLAN, we implement a tagging mechanism
using the following steps.

1. We setup an Open vSwitch [10] bridge at the external
interface to OVXN, which connects to the experiment
network.

2. The OVS bridge is configured with a flow to strip
VLAN from any incoming packet before sending it to
the host.

3. An agent in OVXN receives information (tuple) from
boss (main provisioning server) <ControllerIP, Con-
trollerMAC,VLAN> for each experiment during the
creation.

4. Based on the tuple data, a flow rule is added to the
OVS bridge to push vlan based on the destination IP.
For example, if the SDN controller’s IP is 10.1.1.1, and
VLAN number is 15, the corresponding rule would be
<Match:ipv4 src:”10.1.1.1”, Actions:VLAN:15,
Output:1>.

5. A static ARP entry is added at the OVXN for the SDN
controller to prevent arp broadcast.

In this way, isolation is guaranteed between individual SDN
controllers with a shared node. Also, in terms of bandwidth,
we have 2 X 10G interfaces towards the OVXN, which is
sufficiently provisioned for multiple SDN controllers. We
illustrate the SDN experiment isolation in Figure 5 where
two identical SDN experiments specified in the above NS
file (Expt1 and Expt2) are running. The OVXN connects to
the controllers over a shared experiment network, however
it tags the packets based on the controller that will be the
packets’ destination.

Rule-space Isolation: Since, we do not restrict the IP-
address space, and also allow any OpenFlow rules to be spec-
ified by the experimenters, it can be challenging to truly
isolate each experiment’s packets as they share the same in-
frastructure (sometimes the same switch). To do this, we use
the IP Type of Service (ToS) bit. We tag each packet with a
specific ToS tag determined by the tenant-id (or experiment-
id) based on its incoming port. Also, the user’s rules are
modified to contain the ToS bit in match, and action. How-
ever, when the packet leaves the network, ToS is stripped off.

SDN SwitchExpt Switch

C1 C2 n1 n2 n1 n2

OVXN

OVS

Expt1 : VLAN X

Expt2 : VLAN Y

Expt1 : Controller Expt2 : Controller Expt1 Expt2

Figure 5: NCL SDN experiment setup to demon-
strate controller isolation.

We use the ToS bit to perform isolation since the HP-3810
switches used in NCL infrastructure do not support VLAN
strip action. However, in other supporting switches VLAN
identifiers could be used for isolation. Our approach has
the advantage that a user is allocated physical hardware re-
sources and the experiment provides true performance test.
Our current approach is limited in terms of its scalability in
that the network topology that can be supported is limited
by the actual (or subset of) physical topology. We are look-
ing to improve the scalability of our approach to support
any arbitrary topology in future work.

3.3 Smart NICs with SDN
Host-based networking includes implementation of net-

work functions such as virtualization and switching to be
operated on a standard commercial off the shelf hardware
equipped with x86 CPUs. This type of deployment is com-
mon in the industry to enable significant efficiency gains,
and gives complete control of the networking stack to the
network operator.

To alleviate the burden on host system for packet process-
ing, network functions such as switching can be offloaded
to smart NICs. Smart NICs have architectures supporting
flow and packet processing by having hardware-based ac-
celerators to handle repetitive or specialized functions such
as hashing and cryptography. Smart NICs are fully pro-
grammable, energy-efficient multi-core processors on which
many packet processing functions including a full-blown soft-
ware switch (e.g., Open vSwitch) can run.

We have purchased and installed several Netronome smart
NICs on DeterLab, which run Open vSwitch and provide
multiple virtual interfaces supporting multiple virtual ma-
chines. One can thus run many virtual machines on a node
with a smart NIC running Open vSwitch and interconnect
them into various topologies. One of the virtual machines
can run the user’s SDN controller, which can be connected
to the virtual switch running in the smart NIC.

Similarly to the software-based Open vSwitch solution,
this technique provides complete isolation to the user but has
much better performance. However, the user is restricted on
the number of virtual nodes and the topologies, which can
be initialized on one physical node.

4. RELATED WORK
Testbeds other than DeterLab and the NCL testbed have

provided SDN experimentation capabilities to users. The
GENI [8] testbed’s support is based on FlowVisor [13] slic-
ing, where users of an experiment may opt-in to any slice
of their choice. FlowVisor can compromise isolation in case
of any misconfiguration of the slices. Also, the topology is
fixed to the entire global physical topology (or a subset),
and not to the experimenter’s choice of any arbitrary topol-
ogy. Hardware-based approaches adopted by our testbeds
minimize the constraints on topology provided to the user.

Recently, other GENI-like testbeds started supporting SDN,
like OFelia [14], ESNet [15], and Felix [16]. They give access
to SDN experiments using switches where selective ports are
controlled by OpenFlow and connected together to gener-
ate limited types of topologies. Also, they connect multiple
sites using federation. CloudLab [17] provides a customiz-
able SDN environment, using 100 G dedicated SDN-based
inter-connects to communicate with other sites. Most of
the testbeds are WAN network, which span across multi-
ple sites. This may not be suitable for certain experiments,
which try to emulate a data-center with low inter-node de-
lay. Our solutions are more flexible and support a wider
range of topologies. Further, current SDN solutions on tes-
tbeds do not address isolation and sharing issues, while our
work focuses on these.

5. CONCLUSIONS
There are many advantages to supporting SDN on tes-

tbeds, but there are also notable challenges in implementing
a high-performance solution that is also fair and secure. We
have described three possible approaches for SDN support
on testbeds and discussed their pros and cons. Our future
work will be to implement and to evaluate these approaches
in rigorous tests of performance, security and usability.

Acknowledgement. This research is supported by the
National Research Foundation, Prime Minister’s O ce, Sin-
gapore under its National Cybersecurity R&D Program (award
No. NRF2015-NCR-NCR002-001) and administered by the
National Cybersecurity R&D Directorate. This project is
also the result of funding provided by the Science and Tech-
nology Directorate of the United States Department of Home-
land Security under contract number D15PC00184. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted necessarily representing
the official policies or endorsements, either expressed or im-
plied, of the Department of Homeland Security or the US
Government

6. REFERENCES
[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
et al., “B4: Experience with a globally-deployed
software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[2] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey,
and G. Wang, “Meridian: an sdn platform for cloud
network services,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 120–127, 2013.

[3] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker,
R. Clark, and E. Katz-Bassett, “SDX: a software

defined internet exchange,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4,
pp. 551–562, 2015.

[4] B. Lantz, B. Heller, and N. McKeown, “A network in
a laptop: rapid prototyping for software-defined
networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, p. 19, ACM,
2010.

[5] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar, “An integrated experimental environment
for distributed systems and networks,” in Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, (Boston, MA), pp. 255–270, USENIX
Association, Dec. 2002.

[6] R. Bajcsy, T. Benzel, M. Bishop, et al., “Cyber
Defense Technology Networking and Evaluation,”
Commun. ACM, vol. 47, no. 3, 2004.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An
overlay testbed for broad-coverage services,”
SIGCOMM Comput. Commun. Rev., vol. 33,
pp. 3–12, July 2003.

[8] M. Berman, J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar,
“GENI: A federated testbed for innovative network
experiments ,” Computer Networks, vol. 61, pp. 5 – 23,
2014.

[9] “National Security R & D Laboratories.” http://ncl.sg.

[10] B. Pfaff, J. Pettit, K. Amidon, M. Casado,
T. Koponen, and S. Shenker, “Extending networking
into the virtualization layer.,” in Hotnets, 2009.

[11] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the
network testbed mapping problem,” SIGCOMM
Comput. Commun. Rev., vol. 33, pp. 65–81, Apr. 2003.

[12] A. Al-Shabibi, M. De Leenheer, M. Gerola,
A. Koshibe, G. Parulkar, E. Salvadori, and B. Snow,
“Openvirtex: Make your virtual sdns programmable,”
in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14, (New
York, NY, USA), pp. 25–30, ACM, 2014.

[13] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Can the
production network be the testbed?,” in Proceedings of
the 9th OSDI, (Berkeley, CA, USA), pp. 365–378,
USENIX Association, 2010.

[14] M. S. et al., “Design and implementation of the
{OFELIA} {FP7} facility: The european openflow
testbed,” Computer Networks, vol. 61, pp. 132 – 150,
2014.

[15] “ESNet.” http://www.es.net/network-r-and-d/
experimental-network-testbeds/100g-sdn-testbed/.

[16] G. Carrozzo, R. Monno, B. Belter, R. Krzywania,
K. Pentikousis, M. Broadbent, T. Kudoh, A. Takefusa,
A. Vieo-Oton, C. Fernandez, et al., “Large-scale SDN
experiments in federated environments,” in Smart
Communications in Network Technologies (SaCoNeT)
Conference, pp. 1–6, IEEE, 2014.

[17] R. Ricci and E. e. a. Eide, “Introducing CloudLab:
Scientific infrastructure for advancing cloud
architectures and applications,” ;login: the magazine
of USENIX & SAGE, vol. 39, no. 6, pp. 36–38, 2014.

