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Abstract. Most of current text-based CAPTCHAs have been shown to
be easily breakable. In this work, we present two novel 3D CAPTCHA de-
signs, which are more secure than current 2D text CAPTCHAs, against
automated attacks. Our approach is to display CAPTCHA characters
onto 3D objects to improve security. We exploit difficulty for machines
in rotating 3D objects to find a correct view point and in further recogniz-
ing characters in 3D, both tasks that humans can easily perform. Using
an offline automated computer vision attack, we found that 82% of the
new text reCAPTCHA characters were successfully detected, while ap-
proximately 60% of our 3D CAPTCHAs were detected only if characters
were focused and zoomed from the direct view point. When CAPTCHAs
are presented in slightly different views, the attack success rates against
our approaches are reduced to almost 0%.
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1 Introduction

The Completely Automated Public Turing test to tell Computers and Humans
Apart (CAPTCHA) [27] is a type of challenge and response test to distinguish
humans from machines. Although CAPTCHAs must be easy for humans to solve,
they must be difficult for a bot to pass in a reasonable amount of time. Cur-
rently, the most widely used form of a CAPTCHA, 2D text CAPTCHA, presents
a CAPTCHA as a combination of random characters, symbols, and numbers in
a 2D space. Due to its simplicity and ease of use, 2D text CAPTCHAs have
been widely deployed in many websites to prevent access from automated bots.
However, 2D text CAPTCHA is vulnerable and even easily breakable by Opti-
cal Character Recognition (OCR) software or automated offline post-processing
attacks such as segmentation attacks [8][20] that segment and recognize each
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character separately. There have been attempts to add more background noise,
dots, and lines across characters to make recognition difficult. However, auto-
mated character recognition technology is getting better every day. Therefore,
there is a fundamental limitation to 2D text CAPTCHAs, which can be easily
broken by improved OCR applications and segmentation attacks.

In order to overcome the fundamental limitations of 2D text CAPTCHA,
audio based CAPTCHAs [2] have been proposed. However, [18] shows that an
automatic speech recognition (ASR) system can defeat audio reCAPTCHA with
a significantly high probability of success. Also, moving-image object recognition
(or video) based CAPTCHAs [22],[12],[24] have been proposed, where characters
are moving or streaming as a video and users enter animating 2D characters.
However, [28] provides an effective attack against these types of CAPTCHAs.

In this work, we address the weakness of the current text CAPTCHA mech-
anisms from a fundamentally different direction. We either place or project 2D
text CAPTCHAs on the surface of a 3D object, and then randomize the view-
point of the 3D object. Thus, users need to rotate objects first to get the right
view points, and the identify characters. We explore two different approaches to
place 2D text CAPTCHA onto 3D objects. The first approach is to embed CAP-
TCHA characters as a part of textures in a 3D object using UV mapping [5].
The second approach is to project a 2D text CAPTCHA onto a 3D object. The
first approach explores various texture rendering techniques on the surface of
a 3D object to improve security and usability. The second approach projects
an individual CAPTCHA character from a specific view point towards uneven
surfaces of a 3D object using ray-tracing.

While humans can easily perform the object rotation and character recogni-
tion task in 3D, bots require additional complex algorithms to identify the correct
shape of a 3D object and pin-point the coordinates that CAPTCHA characters
are placed on. Then, bots have to perform character recognition and segmenta-
tion to recognize characters displayed on the 3D objects. Although significant
progress has been made in 3D shape identification and character recognition
research [16], [26], [7], [11], we demonstrate that a series of object recognition,
rotation, and CAPTCHA recognition tasks in 3D are still challenging given the
current bots’ capabilities.

2 Related Work

Many types of CAPTCHAs have been proposed using video, audio, game, puzzle,
cognitive task, etc. Due to space limitations, we mainly surveyed research that
is directly relevant to our approaches..

Text-based CAPTCHAs are widely used due to their simplicity, where hu-
mans have to type displayed characters. The reCAPTCHA [2] is the most popu-
lar text CAPTCHA. Recent research in [9] addresses the importance of correctly
configuring 2D text CAPTCHA parameters to maximize usability and security.
They performed an extensive evaluation and user study, and provided new in-
sights and details on the factors to improve usability and security of 2D text
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CAPTCHA. However, their focus was to mainly evaluate existing 2D text CAP-
TCHA systems. Much research including [20],[8] has shown that it is very easy
to break 2D text CAPTCHAs with text recognition and segmentation attacks.
Therefore, 2D text CAPTCHAs have a fundamental limitation that can be de-
feated by the improved OCR and segmentation attacks. Hollow CAPTCHAs
were proposed as alternatives, which use contour lines to form connected hollow
characters and further aim to make segmentation and recognition difficult in a
2D space. However, [14] successfully broke a whole family of hollow CAPTCHAs.

Another popular CAPTCHA is an image based CAPTCHA that requires
a user to classify and choose specific images. The Asirra CAPTCHA [13] is an
image classification-task-CAPTCHA that for example, distinguishes a cat image
from a dog image. However, the automated machine classification algorithm
proposed by [15] can easily break this approach. Also, Sketcha [23] asks a user to
rotate images to specific directions or positions. This is similar to our approach as
users have to perform a rotation task. However, rotation in Sketcha is performed
in a 2D space using rather simple image sets, which can be potentially defeated
by a 2D image classification algorithm. The new reCAPTCHA (No CAPTCHA
reCAPTCHA) includes an object classification task as well, where it asks a user
to select all of the “cake”, “cat”, or “sushi”, etc. images. However, [25] shows
that new image based reCATPCHA can be broken with more than 70% accuracy
using off-the-shelf deep learning package. In addition, animated CAPTCHAs,
also known as moving-image (video) object recognition CAPTCHAs, have been
proposed. However, [28] demonstrated a way to break animated CAPTCHAs
with computer vision and motion tracking techniques using classifiers. Further,
they proposed the new CAPTCHA based on an emerging image concept in [19].
However, it is still in the 2D domain. In fact, CAPTCHA characters can be
displayed in a 3D space. However, recent work [21] demonstrated the step-by-
step approach to break 3D characters with offline processing techniques. They
claimed to decode the 3D text CAPTCHA with 92% accuracy.

3 3D CAPTCHA Design

We explore two types of 3D CAPTCHAs: 3D Texture CAPTCHA and 3D Pro-
jection CAPTCHA. In 3D Texture CAPTCHA, we embed CAPTCHA characters
directly to the surface of a 3D model as a part of textures using UV [5] mapping,
where UV maps 2D textures to a 3D model. This allows adding various textures,
backgrounds, and noise effects from the 2D text CAPTCHAs onto a 3D object.
Users have to identify the surfaces that CAPTCHA characters are located. In
the second 3D Projection approach, we project a 2D text CAPTCHA to a 3D
model. In particular, we projected the 2D text CAPTCHA image from a spe-
cific view point towards a 3D object. Therefore, users have to identify a correct
projection view point, in order to recognize CAPTCHA characters. Users can
rotate a randomly placed 3D object in a 3D space to locate CAPTCHAs in a
direct view. Once, users are able to locate the CAPTCHA, they can read and
enter the CAPTCHA characters similar to 2D text-based CAPTCHAs.
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3.1 2D Character Generation

Similar to current 2D text CAPTCHAs, we randomly generated 2D characters
as an image file. The characters are read from left-to-right direction. We used the
similar character sets recommended in [9] for lowercase letters, uppercase letters,
digits, and non-confusable letters. In addition, font color, dot size, number of
dots, number of lines, and line width can be used as configurable parameters.
However, we did not consider these additional parameters. Instead, we capture
those lines and dots as a part of texture in a 3D model. Since the font and color
of CAPTCHA characters do not impact the usability and security according
to [9], we only used the one font and one color for convenience in this work.

3.2 3D Object Generation

First, we created simple 3D models first using Unity [3] such as cube, circu-
lar cone, cylinder, triangular pyramid, hexagonal pyramid, etc. as base objects.
Then, we combined and concatenated multiple 3D base objects to construct
more complex synthetic shapes and polygons. Especially, we generated synthetic
shapes to have irregular convex or concave surfaces to ensure that CAPTCHA
characters are not easily detectable and recognizable. Also, this allows that a
character can span over multiple surfaces so that it requires to rotate multiple
times to completely recognize a character.

Further, these synthetic shapes are advantageous since these are new models
that do not exist in the real world. Therefore, it is very difficult to train machine
learning algorithms to perform meaningful prediction and classification because
of a lack of a training set on the newly created 3D models. In addition, Unity
provides more than 1,000 free 3D models to use. We collected freely available 3D
object models that Unity provides such as a car, a piano, a chair, etc. Therefore,
our 3D models include models that exist in real life as well as syntactically
created objects. Some samples of syntactically generated 3D models and 3D
models from real life are as the Fig.1 and 4 respectively.

3.3 Approach1: 3D Texture CAPTCHA

We placed the generated 2D text CAPTCHAs to different 2D textures, where
different types of fractal lines or background noise effects can be added to the
texture. This has much more stronger impact than adding dots or lines in current
2D text CAPTCHAs. For texture mapping, we have following two different base
texture sizes, 1) 1024 x 1024 and 2) 2048 x 2048 resolution (in pixels), in order
to capture the granularity of a texture in a 3D model. Based on our empirical
experiments on configuring different texture and model sizes, above two different
texture resolution sizes suffice most of our needs. Once we generated a combined
texture and CAPTCHA characters in 2D, we applied a UV mapping [5] to map
a 2D texture in (u,v) coordinate onto a 3D object in (x,y,z ) coordinate. The
UV mapping assigns pixels in 2D image to surface on the polygon, by copying
a triangle shaped piece of the 2D image map onto a triangle on a 3D object.
The texturing and UV mapping is a one-way transformation. Hence, after this
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step, it is nearly impossible to simply separate CAPTCHA characters from a 3D
model. Figure 1 shows examples of 3D models with UV mapped textured from
the previous step. Therefore, finally we created a 3D object with CAPTCHA
characters embedded in its texture.

Fig. 1. Examples of 3D Texture CAPTCHAs

3.4 Approach 2: 3D Projection CAPTCHA

In this approach, we project CAPTCHA characters onto a 3D object as shown
in Fig. 3. The main idea is to project a 2D text CAPTCHA from a specific angle.
Hence, viewing from a slightly different view point (angle) would blur or occlude
projected CAPTCHA characters. In Fig. 3, the projection point is shown as a
red light source, which projects the 2D text CAPTCHA image toward a 3D
object. Before projecting a 2D text CAPTCHA, we preprocessed the generated
2D text CAPTCHA image to be 64 x 64 pixels so that the 2D CAPTCHA can
be smaller than the 3D object size. Further, we varied the alpha channel value [1]
of 2D text CAPTCHA, where alpha channel value or compositing controls the
transparency of the image from background. We set CAPTCHA characters to be
transparent, while setting opaque for other background in the image as shown
in Fig. 2. In Fig. 2, the left figure is the original 2D text CAPTCHA image. The
right figure is the generated image from changing the alpha channel value so
that background is black (opaque) while all characters are white (transparent).
This alpha compositing functions a filter so that a light only passes through the
character parts while the rest of opaque parts are completely blocked. Certainly,
other background effects such as dots and lines can be added before this step
similar to 3D Texture CAPTCHA to improve usability and security. Next, we
placed a 3D object in (x, y, z ) coordinate as shown at the center in Fig. 3.
In addition, various lighting effect such as directional lights, point lights, and
spot lights with different color can be added from any 3D space coordinate, and
further projected into the 3D object to make CAPTCHA recognition difficult.
Furthermore, we can add and configure different shading effects at this step.
Some examples of finally generated 3D Projection CAPTCHAs are shown in
Fig. 4.

3.5 Final 3D CAPTCHA Generation

Finally, we generated 3D Texture and Projection CAPTCHAs by compiling
objects, models, and textures we defined in the previous steps with the Unity
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Fig. 2. Alpha channel value changed before Projection

Fig. 3. 2D text CAPTCHA Projection onto a 3D model with different light sources

Fig. 4. Examples of 3D Projection CAPTCHAs

3D Web Player. The Unity Web Player [3] generates a binary to be completely
played in the web browsers after installing the plugin. We developed the web-
based user interface to move and rotate a 3D object in 360 degree in (x, y, z )
direction with a mouse click. Following Fig. 5.(a) and 6.(a) show the generated
3D Texture and Projection CAPTCHAs, respectively. Also, we present screen
captures of object rotations to identify the CAPTCHAs in each approach in
Fig. 5 and 6. In the first 3D Texture approach, users have to rotate the piano
object multiple times to locate CAPTCHA characters “SF@OyW” as shown in
in Fig. 5(b).

In the second projection approach, users have to rotate a 3D object to view
from a projection point as well as they need to adjust the precise viewing an-
gle to recognize all CAPTCHA characters, “HNe6”, as shown in Fig. 6.(a)-(c).
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Furthermore, in the second approach, if users view from a slightly different an-
gle such as in Fig. 6.(b), the CAPTCHA characters appear blurred. Once users
locate the CAPTCHAs, we provide a text box to enter CAPTCHA characters
similar to reCAPTCHA.

(a) Initial placement (b) Locating the CAPTCHA

Fig. 5. 3D Texture CAPTCHAs to locate “SF@OyW”

(a) Initial placement (b) Rotate to find a
CAPTCHA

(c) CAPTCHA char-
acters are in the di-
rect view

Fig. 6. 3D Projection CAPTCHAs to locate “HNe6”

4 Potential Attacks to 3D CAPTCHAs

We analyzed and conducted the following five realistic attacks against 3D CAP-
TCHAs: 1) Off-The-Shelf OCR attack, 2) Computer Vision Attack, 3) Client
Side Code Attack, 4) Brute-Force based Incremental Object Rotation Attack,
and 5) CAPTCHA relay attack for human solvers. The first attack is using OCR.
Although OCR is getting better, current OCR technology focuses mainly on 2D
object and character recognition. We tried the commercial OCR [6] to our 3D
models and the 2D OCR performed extremely poorly against our systems. The
2D OCR by itself is useless to attack our systems. Therefore, we do not present
the result with the OCR attack alone. Other more serious attacks are discussed
in the following sections:

4.1 Computer Vision Attack

A bot has to recognize a 3D object first and rotate the object. Then, a bot should
perform a series of segmentation and CAPTCHA recognition attacks similar to
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attack 2D text CATPCHAs. Currently, we are not aware of any approaches
that can intelligently rotate objects, and detect characters in an automated way.
Hence, in order to provide meaningful quantitative comparisons with computer
vision attack, we relaxed our assumption significantly. We rotated an object
and presented parts or all of CAPTCHA characters to be in the direct or near
direct view so that the CAPTCHA recognition algorithm can directly attack.
We defined the viewing angle, θ, to be the angle between users looking at the
screen and the surface where the CAPTCHA characters were located in a 3D
model. Therefore, θ = 0◦ was the direct view towards the CAPTCHA characters,
effectively making 3D CAPTCHAs to the 2D text CAPTCHAs. We varied θ from
-45◦ to 45◦ so that all or part of CAPTCHA characters were shown. If θ is greater
than ±45◦, then CAPTCHA characters would not be seen to users.

Then, we performed an offline computer vision attack under this relaxed as-
sumptions. In particular, we used maximally stable extremal regions (MSER)
region detector [11] to effectively detect regions, objects, and characters with
modifications. The sequence of the proposed offline attack was as follows: 1) de-
tect regions containing CATPCHAs, 2) segment out characters from a 3D model,
and 3) perform optical character recognition (OCR). In particular, we used the
Canny Edge Detector [10] to further segment the CAPTCHA characters after de-
tecting the MSER region. Also, we filtered character candidates using connected
component analysis. For the 3D Texture CAPTCHA, we used 6 different models
and 2 different textures, and randomly generated characters. Also, in order to
improve CAPTCHA detections, we zoomed-in the area where CAPTCHAs were
located for offline processing. This scenario is the optimistic scenario, where a
bot already figured out the 3D object rotation and CAPTCHA area identifi-
cation, and further it could focus on the region that to improve CAPTCHA
segmentation after removing noise.

Figures 7.(a) and 7.(b) are the examples of CAPTCHA characters presented
in the direct view for 3D Texture and Projection CAPTCHA, respectively. The
identified MSER region is shown in the first figure of Fig. 7.(a). The second figure
in. Fig. 7.(a) is the final CAPTCHA region detected by the proposed attack,
and it cannot recognize the text. Next, we carried out the same attack to 3D
Projection CAPTCHAs with 17 different models, where algorithms attempted
to identify the CAPTCHA character region with MSER detector and the Canny
detector in Fig. 7.(b). However, in Fig. 7.(b), it cannot not successfully identify
the correct region and further is not able to carry out CAPTCHA recognition,
even if the CAPTCHA is presented in the near direct view. On the other hand,
we applied the same attack to the new text-based reCATPCHA. As shown in
Fig. 7.(c), the off-the-shelf computer vision algorithm can successfully detecting
the CAPTCHA “12028”.

In Fig. 8, we provide the average CAPTCHA character recognition success
rate from the proposed attacks. We consider an attack is successful only if all the
given CAPTCHA characters are correctly recognized from the viewing angle, θ.
For example, it is possible that only 2 characters are visible if θ = −30◦, while 5
characters can be shown if θ = 0◦. In order to compare, we manually rotated ob-
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(a) Attack on 3D Texture CAPTCHA: MSER Region Detection and
Recognition Failure

(b) Attack on 3D Projection CAPTCHA: MSER Region Detection
and Recognition Failure

(c) Attack on New Text reCAPTCHA: MSER Region Detection and
Recognition Failure

Fig. 7. Computer vision attack on each approach

jects to be at ±45◦,±30◦, ±15◦ and 0◦ from the direct view point, and captured
those images, and inputted those images into our proposed attacks. The detec-
tion results are shown in Fig. 8. From 50 manually rotated and captured images,
overall on average 48.9% and 31.5% of all of given CAPTCHAs were successfully
detected for 3D Texture and Projection CAPTCHAs, respectively. At θ = 0◦,
we zoomed and focused the CAPTCHA region area to improve detection. Then,
the detection success rate increased to 60% and 64.7% for 3D Texture and Pro-
jection CATPCHAs, respectively. This demonstrates that even viewing from the
precise and best angle, a computer vision algorithm does not achieve the high
success rate as found in the 2D text CAPTCHAs. Also, it was interesting to ob-
serve that, if angle was improved from ±30◦ to ±15◦, the detection rate was not
improved at all. This is due to the fact that our CATPCHAs span over multiple
surfaces and require to have multiple views to locate all CAPTCHA characters.
Hence, our design is resistant to current 2D text CAPTCHA attack in several
different ways. If θ 6= 0◦, 3D Projection CAPTCHA was more difficult to detect
than 3D Texture approach. However, if θ = 0◦, then 3D Texture CAPTCHA
was slightly more difficult to detect than 3D Projection CAPTCHA.

Also, we obtained 50 different new text-based reCAPTCHA and performed
the same attack. We found out that 82.9% of new text reCAPTCHA were com-
pletely detectable with the simple automated computer vision attacks. The re-
CATPCHAs detection success rate was much higher than ours in the most op-
timum scenario: only if a machine can perfectly rotate, identify, and focus on
the CAPTCHA area in a 3D model (finding θ = 0◦) as humans do, then it can
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Fig. 8. Viewing Angle (θ) vs. Detection Success Rate with Automated Computer Vision
Attacks(%)

achieve the highest success rate. Therefore, for the same attack, our approach is
much stronger than the new text reCAPTCHA.

4.2 Client Side Code Attack and Binary Analysis

Although the WebGL [17] provides the similar 3D graphic capabilities, we specif-
ically did not use the WebGL due to the potential client side code attack. Since
WebGL relies on the client side JavaScript to render 3D object, textures, and
further CAPTCHAs, it is possible to parse the WebGL that describes 3D objects,
2D textures, and extract the 2D text CAPTCHAs. On the other hand, Unity
generates a Web Player binary that includes all 3D objects, textures, and CAP-
TCHAs from the backend and only plays through the web browser. Therefore,
it is difficult to reverse engineer and parse the CAPTCHAs from the generated
binary. Although it is not impossible to decompile and obfuscate the Unity script
using a tool such as [4], we generate a new CAPTCHA and texture information
from the backend and the client-side web player calls backend code to retrieve
the detailed CAPTCHA and 3D information. Hence, even though attackers are
able to decompile the binary, the CAPTCHA, 3D models, and textures informa-
tion are not stored in the client side. Our approach is much more robust against
the client side code attack compared to other 3D development platforms that
heavily use client side code such as the WebGL.

4.3 Brute-Force based Incremental Object Rotation Attack

It is possible that the automated system can incrementally rotate a 3D object
until to detect the characters regions with high probability and try to identify
characters with OCR types of applications. This Brute-force approach might
take a lot of iterations but does not require any intelligence in understanding
unseen synthetic 3D objects. If attackers have enough computing power, this
Brute-Force based Incremental Object Rotation Attack can be a serious to our
system.

However, first, our textures and uneven surface make accurate detection dif-
ficult as we use different background noise and lighting effect as we observed
from computer vision attack. Second, we measured the average time, and the
number of clicks needed to solve CAPTCHAs from 90 participants as shown in
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Table 1. In order for this attack to be successful, a bot has to completely mimic
human behavior and we observed that humans are not incrementally rotating
objects. Therefore, our defense is to compare the average solving time and hu-
man click behavior with this attack, where each rotation requires a mouse click.
Therefore, 1) if it takes far longer or shorter to solve or 2) significantly exceeds
the number of clicks usually needed for humans, we can classify this as an attack
and reject. Using gathered statistic on typical human behaviors on solving 3D
CAPTCHA as a prior information, we believe we can easily mitigate and reject
the brute-force based incremental object rotation attacks.

Modeling Parameters Avg Median std

Num. of Clicks 3.31 2 0.0878

Click Distance in Pixels 150.26 126.5 0.0035
Table 1. Human Behavior Modeling on 3D CATPCHAs

5 Conclusion and Future Work

We present two different 3D CAPTCHA mechanisms using 3D objects, projec-
tion, and texture techniques. Although our concept is simple, we provide much
stronger protection against various existing attacks, which can easily break cur-
rent 2D text CAPTCHAs. The future work is to conduct user study to evaluate
the usability and security trade-offs among different CAPTCHA mechanisms.
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