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Cloud computing customers currently host all of their application components at a single
cloud provider. Single-provider hosting eases maintenance tasks, but reduces resilience to
failures. Recent research (Li et al., 2010) also shows that providers’ offers differ greatly in
performance and price, and no single provider is the best in all service categories. In this
paper we investigate the benefits of allocating components of a distributed application
on multiple public clouds (multi-cloud). We propose a resource allocation algorithm that
minimizes the overall cloud operation cost, while satisfying required service-level
agreements (SLAs). In spite of the additional delays for inter-cloud communication and
the additional costs for inter-cloud data transfer, our simulation study, using real cloud
performance and cost data, demonstrates that multi-cloud allocation outperforms single-
cloud allocations in a variety of realistic scenarios.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cloud providers vie for customers by offering differenti-
ated, reliable, specialized, unique, or cheaper services than
their competitors. The performance of generic services,
such as Web server hosting and computing, can vary
greatly between providers given the same price range [1].
Such an environment makes multi-cloud resource allocation
appealing. If providers differ greatly in their offers, hosting
components of a distributed application with different pro-
viders should lead to a better price/performance trade-off
than hosting them all at any single provider. In addition
to cost and performance considerations, single-provider
hosting lowers the reliability of an application in case of
a provider-wide outage [2]. Although providers try to guar-
antee 99.9% availability through vertical and horizontal
computing resource scaling, scalability can also be a criti-
cal issue for a single-provider approach as the number of
applications and demands increase in the future. Further-
more, recent research shows that multi-cloud hosting has
lower latency, as seen by end-users, than single-cloud
hosting [3].

On the other hand, multi-cloud hosting adds communi-
cation delays and extra operational cost for inter-cloud
data transfer. Also, the multi-cloud approach adds more
complexity to application maintenance due to the lack of
standard application programming interfaces (APIs) for
application deployment on different clouds.

The main goal of this work is to evaluate performance
and cost of multi-cloud resource allocation, and to
compare these to the performance and cost of the single-
provider approach for a variety of realistic cloud use
scenarios. We do not assume anything about an end user’s
platform (e.g., fixed vs. mobile), nor how a user’s applica-
tion tasks are divided between their end platform and
the clouds. The end-user observed delay consists of the
time spent to perform tasks on one or more public clouds,
and the time to transfer the data between the user’s device
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and the clouds. Our study focuses on optimizing the first
factor in this sum – the time spent to perform tasks on
one or more public clouds. This factor remains constant
for any end user’s platform, but the division of application
tasks between the user’s device and the cloud, as well as
delay requirements, may change. We investigate a wide
range of delay requirements in our work and show that
for many of them multi-cloud allocation outperforms most
of single-cloud allocations. Thus, we believe our results
apply to a wide range of end-user’s platforms. The delay
between end user and the cloud changes based on a cloud’s
location, thus some allocations that benefit from multi-
cloud allocation approach may not be acceptable to users
that are physically far away from one or more clouds. We
leave consideration of this second factor in end-user ob-
served delay for our future work. Also, mobile users are
bandwidth-constrained and their applications may be dis-
tributed between their platform and the clouds in a way
that minimizes data transfer between the user’s device
and the cloud. We believe an application developer would
decide which application tasks are best performed on
clouds. Our algorithm can then be used to find an optimal
allocation for this subset of tasks. Also, an end user may
have security requirements about which application com-
ponents can be hosted on which public clouds. We leave
consideration of this to our future work.

While others have proposed hybrid or federated cloud
computing paradigms [4,5] and have evaluated the bene-
fits of private/public cloud allocations [6,7], ours is the first
work that extensively evaluates the benefits of application
allocation on multiple public clouds. A recent publication
[3] shows that multi-cloud allocation reduces the delay
as seen by the end user. That research focuses only on
Web service hosting and evaluates only the delay aspect
of resource allocation. We, on the other hand, focus on sev-
eral popular types of cloud applications and evaluate both
the delay and the cost of multi-cloud and single-cloud
allocations.

Our contributions are:

1. We propose a novel cloud resource allocation
algorithm that determines the best allocation of
application components over multiple public cloud
providers, under a given performance constraint.

2. We show through extensive evaluation, which
relies on realistic benchmark data about cloud per-
formance and price, as described in [1], that multi-
cloud allocation outperforms single-cloud alloca-
tion in a variety of realistic cloud use scenarios.
We also investigate the cloud and application fea-
tures that best bring out the benefits of multi-cloud
resource allocation.

2. Related work

A hybrid or a federated cloud is composed of two or
more private, community, and/or public clouds which
work together to achieve the application objective, while
each cloud remains as a unique entity [8]. Typically, in a
hybrid cloud, the organization manages and uses in-house
computing resources as well as external cloud resources. A
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applic
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multi-cloud is a specific form of the hybrid cloud where all
clouds are public clouds.

Migrating parts of the applications to a cloud has been
addressed in [9]. Also, [10] provides an approach to
dynamically split transactions in different data-centers.
However, [9,10] assume allocation on a single cloud pro-
vider. Publications [4,5] point out the potential scaling
problem of single-provider hosting as the number of users
and applications increase, and, thus, champion federation
among different cloud providers. These publications, how-
ever, focus only on reliability and do not evaluate the po-
tential performance and cost-saving benefits of federated
allocation.

Publications [11,12] similarly focus on overcoming in-
ter-cloud interoperability, workload distribution, and in-
ter-cloud policy issues of hybrid or federated cloud
hosting. Publications [7,13] considered the application of
the public/private clouds to improve the cost and response
time of applications. However, they only consider the use
of compute machines and private/public cloud allocation.
On the other hand, we consider more cloud services (com-
pute, storage and DB resources) and allocation on multiple
public clouds. Also, we focus on the evaluation of perfor-
mance and cost benefits, and we provide a side-by-side
comparison between a single-cloud and multiple public
clouds approach.

A recent publication [3] shows that multi-cloud alloca-
tion reduces the delay as seen by the end user, but focuses
only on Web service hosting and delay benefits. We, on the
other hand, investigate more cloud applications, and we
evaluate both the performance and the cost of each alloca-
tion scenario.

3. Multi-cloud resource allocation

While cloud providers try to differentiate themselves
from their competitors by offering some unique, special-
ized services and APIs, most clouds offer generic compute,
database (DB), and storage services and have a similar
price structure for them (i.e., some combination of flat rate
and per usage cost). In [1], the authors benchmarked these
generic services over four popular cloud providers and had
two major findings:

1. No single provider offered the best performance in
all three service categories. For example, one pro-
vider offered very fast computing resources but
slower storage and no DB service. Another offered
fast DB service and fast binary large object (blob)
storage (for some blob sizes), but its compute
machines were much slower than its competitors’.

2. There was a large difference in price between pro-
viders for the same level of performance for a given
service.

If a cloud application needs resources from several of
these generic services, the differences in performance and
price across providers make a multi-cloud resource alloca-
tion an attractive choice. Depending on the exact resources
being allocated and the application workload, such
multi-cloud allocation has the potential to outperform
ation allocation on multiple public clouds, Comput. Netw. (2014),
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single-cloud allocations, both in performance and in price.
However, multi-cloud allocation carries the additional
costs for inter-cloud data transfer and additional delays
for communication between clouds. In this paper, we
investigate the benefits and costs of multi-cloud resource
allocation and identify cases in which it outperforms
single-cloud allocations.
3.1. Cloud performance and cost

In our evaluation, we use the results published in [1] for
Microsoft, Amazon and Google cloud providers to calculate
the performance and the cost of each resource allocation.
We obtained raw data from the authors of [1] and ex-
tracted detailed performance data for each service and
each provider. We anonymize provider names as A, B,
and C in random order. In [1], the authors benchmark com-
pute, DB and storage services using a variety of micro-
tasks. For compute services, they use the following sixteen
micro-tasks: Security (compression, AES encrypt/decrypt,
RSA encrypt/decrypt, sign/verify), Multimedia (mpeg en-
code/decode), CPU (Fast Fourier Transform, LU decomposi-
tion, Monte Carlo simulation, linear equation solving,
sparse matrix calculation, 3D rendering), I/O (read, write
and read after write, all for a 100 MB file from local disk),
and Memory (read/write for <2 MB chunk, read/write for
>10 MB memory chunk). For DB services, they measure
the time needed for a cloud to process a put, a get, and
a query operation. For blob storage, they measure the time
needed to upload or download a 1 KB and a 10 MB blob of
data. Each of the micro-tasks is measured multiple times
for a given cloud and a given class of resources (e.g., slower
vs. faster compute machines in the same cloud), and the
median and standard deviations for the measured values
are shown in [1]. In our calculations, we use only the med-
ian value to evaluate the performance since standard devi-
ations are very small for all tasks.

Fig. 1 shows the performance and cost data for each mi-
cro-task, class of resources, and each cloud provider. Pro-
vider A has three classes of compute resources (A1–A3),
one type of DB service (A4), and one type of storage (A5).
Provider B has four classes of compute resources (B1–B4),
one type of DB service (B5), and one type of storage (B6).
Provider C has seven classes of compute resources (C1–
C7), no DB service, and one type of storage (C9). The time
to complete a micro-task is given in seconds, and the cost
is given in US dollars. Micro-tasks mem, io_1KB and
io_10MB are introduced by us for purposes of evaluating
different application deployment scenarios, as explained
in Section 4. The highlighted cells show the best perfor-
mance (i.e., lowest completion time) for each micro-task.
3.2. Cloud applications and workloads

For our evaluation, we needed a set of typical cloud
applications. It is extremely difficult to produce such a set.

First, clouds are used for a multitude of purposes today,
such as e-business, search, social networking, high-perfor-
mance computing, distributed storage, and multimedia
streaming. Each of these classes has very different
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applica
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architecture and priorities with regard to minimizing task
completion time vs. minimizing cost of resource allocation.

Second, even within the same class of cloud applications
(e.g., e-business), the implementation of the application will
influence its resource needs for the optimal resource alloca-
tion. For example, one application may use compute ma-
chines to run both the front-end Web portal and the DB
service, while another application may need to use a combi-
nation of compute machines for front-end Web portal and a
cloud DB service. The first scenario requires only compute
resources, and a single-provider allocation will always be
the best. The second scenario requires compute and DB re-
sources, and for some SLA constraints, a multi-cloud alloca-
tion may outperform allocations on a single cloud.

Third, there is no set of cloud application implementa-
tions that is widely used. Usually, cloud applications are
developed in-house by stitching together popular imple-
mentations for each component (e.g., an Apache Web ser-
ver and a MySQL database to create an e-business cloud
application).

Fourth, the exact performance of the application will
depend on its workload. For example, one e-business
may perform a query operation on a cloud DB ten times
more often than another, thus increasing its task comple-
tion time and resource cost.

All of these factors are too complex and varied, and we
could not produce an accurate model of ‘‘common cloud
applications and their tasks’’ in our study. Instead we aim
to define a realistic set of application workflows and use
them in our evaluation. We define a detailed workflow of
each application, expressing it as a set of transactions,
combined serially or in parallel. A transaction in turn con-
sists of micro-tasks from [1], combined serially or in paral-
lel. While a real cloud application may have a different
workflow than the one in our evaluation set, we believe
that the transactions we have defined, along with their
composition of micro-tasks, are generic enough to fit a
wide range of cloud applications in a given category, and
that differences between a real cloud application’s work-
flow and our representation would be small. In reality, an
application developer could either use a profiling tool, such
as CloudProphet [14], or his/her knowledge of the applica-
tion source code to devise an appropriate workflow and
feed it into our resource allocation algorithm.

3.2.1. Application workflow
We represent a cloud application’s workflow as a sequence

of multiple transactions. Each transaction in turn consists of
micro-tasks from [1] executed in serial and/or parallel com-
binations. The transactions we consider in this paper are
shown in Fig. 2, and their descriptions are given below:

1. T1: Displaying a static or dynamic Web page to the user
– this includes just a memory read assuming that
the Web page is frequently used and is in memory
and not on disk.

2. T2: Searching for a product or some other information
and displaying it – this includes running a query

operation on a cloud DB, one or more get operations
to fetch the data about products, and a Web page
generation and display using these results.
tion allocation on multiple public clouds, Comput. Netw. (2014),
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3. T3/T4: Finding and displaying user or product informa-
tion – T3 version of this transaction assumes that a
cloud DB only stores information about a file storing
user/product details, and a download operation from
cloud storage is needed to fetch these details, fol-
lowed by Web page generation and display to user.
Transaction T4 assumes that user/product details
are small enough to be kept in the cloud DB.

4. T5: Secure sign on – this transaction uses a sign/verify
operation to verify a user’s identity and set up a
browser cookie.
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applic
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5. T6/T7: Finding user information and displaying it
securely – these transactions include a T3/T4 transac-
tion to obtain user information and an additional
encryption (AES) to securely display it.

6. T8: Processing and logging a purchase order – this
transaction encrypts user input, stores this informa-
tion in a cloud DB, and displays a confirmation
page.

7. T9: Making a move in an online game and logging it –
this transaction runs three micro-tasks in parallel.
First, the new game screen is rendered to the user.
ation allocation on multiple public clouds, Comput. Netw. (2014),
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S.S. Woo, J. Mirkovic / Computer Networks xxx (2014) xxx–xxx 5
Second, information about user moves and position
is stored in a cloud DB. Third, some game log entries
are generated and stored in a cloud storage.

8. T10/T11: Downloading or uploading a large file – this
transaction uploads/downloads a 10 MB file to/from
cloud storage.

9. T12/T13: Securely uploading/downloading files – these
transactions encrypt/decrypt a file the user wants to
upload/download and perform the desired operation
with cloud storage.

10. T14/T15: Securely uploading/downloading multimedia
files – these transactions encrypt/decrypt a file the
user wants to upload/download, run MPEG encod-
ing/decoding, and perform the desired operation
with cloud storage.

11. T16: Data/code uploading – this transaction is used at
the start of a scientific computation. It loads large
code/data from the user into memory, stores some
information about it in a cloud DB, writes it to a local
disk (for fast future computation), and stores it in
cloud storage for resiliency.

12. T17: Running a job/store intermediate results – this
transaction runs one map/reduce cycle. In one
branch it reads from a local disk and performs some
calculation (e.g., Monte Carlo simulation). In the
other two parallel branches, it stores some interme-
diate result into cloud storage and may also log
some information into cloud DB.

13. T18: Storing final result – this transaction is run at the
end of a scientific computation. It stores the final
result into cloud storage and may log some informa-
tion about the job status in a cloud DB.

We then assemble workflows of five typical cloud
applications out of our transactions as follows:
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applica
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1. An e-business site (ebus), such as Amazon [15], has
transactions T1, T2, T3, T5, T6, and T8.

2. An online gaming site (game), such as World of
Warcraft Online [16], has transactions T1, T5, T6,
and T9.

3. A file storage site (storage), such as Dropbox [17],
has transactions T1, T5, T7, and T12/T13.

4. A multimedia storage/sharing site (multimed), such
as YouTube [18], has transactions T1, T2, T4, T5, T7,
and T14/T15.

5. A scientific computation site (sci comp), such as
Penguin Computing [19], has transactions T1, T5,
T7, T11, T16, T17, and T18.

In a real cloud computing application, some users may
repeat some transactions, skip some transactions, or per-
form transactions in a different order. Thus, an application
may have a number of workflows that need to be evaluated
to find the best set of resources for them. The final set of
resources would then be a union of the resources found
for each workflow. In our evaluation we use only one
workflow per application.

A real application may further perform some of our
modeled tasks differently. For example, a small e-business
site may decide to host its DB locally on a disk of a compu-
tation machine, thus, replacing the query and get micro-
tasks from some transactions with a memory or I/O read.
Or a scientific computing site may decide to encrypt all
user communication, adding a AES micro-task to transac-
tions T16–T18. While we cannot claim that our workflows
match some of the popular cloud applications exactly, we
believe that they are reasonably close, such that our con-
clusions hold in a variety of real cloud use scenarios.

Further, a real application may choose to combine or
pipeline some micro-tasks (e.g., an e-business site may
tion allocation on multiple public clouds, Comput. Netw. (2014),
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store encrypted user information so it can be served
faster), or it may start encrypting the profile information
in parallel with signature verification. Thus, the transaction
times we use in an evaluation are really an upper bound on
the time it would take to perform a given transaction on a
given set of cloud resources.

Finally, an application developer may use a cloud solu-
tion for storage and/or DB, or he/she may decide to write
his/her own distributed storage or database implementa-
tion. In our evaluation, we consider all of these possibili-
ties. We start with the application workflows as
described above, which all have a combination of compu-
tation, DB and storage tasks. We then convert storage
and/or DB tasks into I/O and memory access respectively
to evaluate alternative workflows where the developer
implements his/her own solution instead of using the
one offered by the cloud.

We define the time to complete a transaction as the
highest sum of times to complete each of micro-tasks over
the serial paths in the transaction:

Ttransaction ¼ max
sp

Xmsp

i¼0

ðti þ ki � TicÞ ð1Þ

where msp is the number of micro-tasks in each serial
path sp; ti is the time needed for each micro-task on the
given cloud resource class for the given cloud provider,
Tic is the round-trip time between two clouds, and ki is
1 whenever there is a transition between resources of-
fered by different providers, either within a transaction
or between two transactions. For example, if we had a
workflow consisting of T2 and T5, and if we selected
B5 and A1 for T2 and C1 for T5, then Tic would be
added twice to the time needed for T2 – once for the
‘‘B5-to-A1’’ transition, and once for the ‘‘A1-to-C1’’
transition.

An application needs some set of resources for the mi-
cro-tasks. Most resources have a flat-rate cost, and some
resources have the added cost per use. Computation re-
sources only incur a flat-rate cost. DB service has the flat-
rate cost plus the usage cost that is charged per transac-
tion. Storage service has the flat-rate cost plus the cost that
depends on how much storage is being used. Additionally,
multi-cloud resource allocations will pay the data transfer
cost for any communication between clouds. We take all
these factors into account when we calculate the total cost
for allocating compute, DB, and storage resources. We as-
sume that we calculate this cost for one month, and we as-
sume some number of DB transactions and some amount
of data stored in cloud storage for that month. We do not
directly include data transfer cost in our cost calculations.
Instead, we calculate monthly savings between the best
multi-cloud allocation and the best single-cloud allocation,
and we then calculate the maximum amount of data that
could be transferred between clouds for that amount of
money. In many cases, we believe that this amount of data
is much higher than cloud applications would transfer to-
day between various resources in one month, thus making
multi-cloud allocation a better choice than allocation on
any single cloud.
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applic
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3.2.2. Resource allocation goal
We assume that an application provider has a time con-

straint for each transaction, which denotes the longest
transaction completion time that the application’s users
are willing to tolerate. Each class of cloud applications
has different priorities with regard to resource allocation
goals. Interactive services, such as search, strive to offer
fastest response to a user’s request, regardless of the cost
of the resources needed to meet this goal. These services
will have strict performance requirements for their re-
source allocation. Non-interactive services, such as high-
performance computing, may be interested in a resource
allocation on cheaper machines, even if this prolongs the
time a user needs to wait for a response. In our evaluation,
we assume that the maximum allowable transaction com-
pletion times are the SLA constraints on the resource allo-
cation problem. We then run our resource allocation
algorithm for several transaction completion targets, span-
ning a wide range of values. For each target, we identify an
allocation strategy that meets all of the SLA constraints and
comes at the lowest price.

3.2.3. Resource allocation
We formulate the resource allocation problem as the

problem of finding a set of resources for a given application
workflow that meets the set of SLA constraints and that
achieves the following:

min CtotalC; ð2Þ

where Ctotal is the total monthly cost for the computing
resources required to complete all of micro-tasks in
the workflow, C is 1 if 8 transaction 2 w; Ttransaction

6

SLAtransaction and1 otherwise, w is the set of all transactions
in the application workflow, and Ttransaction is the comple-
tion time of transaction.

It may seem that simply selecting each service from a
provider with minimal cost will lead to the optimum re-
source allocation. However, there are additional con-
straints that make this problem non-linear. First, the time
for each transaction must meet its SLA constraint. Second,
we assume that a cloud application will only use one cloud
DB service for all its database micro-tasks, and, similarly, it
will only use one cloud storage service for all its storage
micro-tasks. This is a reasonable assumption as users tend
to allocate a large DB for cloud deployment, and the stor-
age cost per data unit declines as more volume is used. This
constraint makes some resource combinations impossible,
further adding to the non-linearity of the problem we seek
to solve.

We find the best resource allocation in the following
manner. First, we compute all possible resource allocations
for each transaction that meet their respective SLA con-
straints. Then, we order these solutions by cost within each
transaction. We start building the final allocation by
exhaustively combining allocations for each transaction
which also meet our one-DB/one-storage constraint. This
exhaustive search progresses from the cheapest to the
most expensive solution and stops as soon as we find a via-
ble solution that meets all of the constraints.

Although our approach is based on an exhaustive
search, the algorithm finds the solution fairly quickly,
ation allocation on multiple public clouds, Comput. Netw. (2014),

http://dx.doi.org/10.1016/j.comnet.2013.12.001


Table 1
Scenario 1: Evaluation results (total monthly cost in dollars) with compute,
cloud DB and cloud storage services (Provider C is not available as a single
provider).

Application min + 0.5 s min + 1 s min + 2 s

ebus Cost1MC = 2231 Cost1MC = 2231 Cost1MC = 2231
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because the different compute, DB, and storage machine
types, as currently advertised by the cloud providers, is a
finite set. In addition, because we used real data measure-
ments taken from [1], our work is not based entirely on
simulation results but incorporates the empirical measure-
ment information.
Cost2MC = 2933 Cost2MC = 2933 Cost2MC = 2231
Cost3MC = 8963 Cost3MC = 8963 Cost3MC = 8963
Cost1A = 4524 Cost1A =4279 Cost1A = 3545
Cost2A = 5298 Cost2A = 5053 Cost2A = 4319
Cost3A = 12,198 Cost3A = 11,953 Cost3A = 11,219

game Cost1MC = 2069 Cost1MC = 2069 Cost1MC = 2069
Cost2MC = 2762 Cost2MC = 2762 Cost2MC = 2762
Cost3MC = 8792 Cost3MC = 8792 Cost3MC = 8792
Cost1A = 4034 Cost1A =3789 Cost1A = 3361
Cost2A = 4808 Cost2A = 4563 Cost2A = 4135
Cost3A = 11,708 Cost3A = 11,463 Cost3A = 11,035

storage Cost1MC = 2322 Cost1MC = 2322 Cost1MC = 2307
Cost2MC = 3096 Cost2MC = 3096 Cost2MC = 2899
Cost3MC = 9996 Cost3MC = 9996 Cost3MC = 8497
Cost1A = 3300 Cost1A = 3300 Cost1B = 2933
Cost2A = 4073 Cost2A = 4073 Cost2B = 3707
Cost3A = 10,973 Cost3A = 10,973 Cost3B = 10,607

multimed Cost1MC = 2518 Cost1MC = 2518 Cost1MC = 2502
Cost2MC = 3301 Cost2MC = 3301 Cost2MC = 3104
Cost3MC = 10,201 Cost3MC = 10,201 Cost3MC = 8702
Cost1A = 5993 Cost1A = 4769 Cost1A = 4218
Cost2A = 6767 Cost2A = 5543 Cost2A = 4992
Cost3A = 13,667 Cost3A = 12,443 Cost3A = 11,892

sci comp Cost1MC = 2409 Cost1MC = 2387 Cost1MC = 2387
Cost2MC = 3183 Cost2MC = 3161 Cost2MC = 3161
Cost3MC = 10201 Cost3MC = 10201 Cost3MC = 8702
A cannot achieve Cost1A = 4830 Cost1A = 4218

Cost2A = 5604 Cost2A = 4992
Cost3A = 12,504 Cost3A = 11,892
4. Evaluation

In our evaluation, we use the application workflows as
defined in Section 3.2.1. We consider four different scenar-
ios, which depend on how the user applications are distrib-
uted and deployed over separate compute, DB, and storage
services. The first scenario assumes cloud applications use
compute, cloud DB, and cloud storage services. Typically,
this scenario is desirable when application providers want
to clearly separate compute, DB, and storage tasks, e.g., for
reliability. For example, managing and storing user session
data in a separate DB and storage from the Web server en-
sures that rebooting a Web server would not disrupt cur-
rent user sessions. The second scenario is when cloud
applications are deployed over compute and cloud storage
services only, and DB tasks are run on compute machines.
This scenario applies when application providers want to
simultaneously manage compute and DB functions for fas-
ter access, while storing data in dedicated cloud storage
service for fault tolerance. The third scenario assumes
cloud applications use compute and cloud DB services
only, and storage tasks are managed on compute machines.
This scenario applies when application providers want to
have fast access to stored data and can implement good
solutions for fault tolerance themselves, and they want to
use cloud DB services for more complex relational DB oper-
ations or for dedicated and faster (key, value) pair lookup.
The fourth scenario assumes cloud applications use only
compute machines for computation, DB, and storage tasks
for fast access, both to database information and to stored
data. This scenario applies to applications with small user
base and simple operations.
4.1. Evaluation details

For each scenario, we evaluate e-business, game, stor-
age, multimedia, and scientific computing workloads as
described in Section 3.2.1. For each transaction in a work-
flow, we calculate the minimum time needed to complete
it using data from Fig. 1. We then use the following three
SLA constraints: (1) minimum + 0.5 s, (2) minimum + 1 s
and (3) minimum + 2 s.

Our results are shown in Tables 1–3. Each table shows
the best allocation (all SLA constraints are met at the low-
est price) for each target, the best single-cloud allocation
for each target, and the monthly cost of each test case.
We also show which allocation scenarios manage to pro-
duce a solution that satisfies the SLA constraints. Since
the monthly costs and savings depend on the number of
DB transactions and the amount of cloud storage used in
a month, we show these for the following combinations
of parameters: (1) 100 K DB transactions and 1 TB of cloud
storage (light load), (2) 1000 K DB transactions and 10 TB
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applica
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of cloud storage (medium load), and (3) 1000 K DB transac-
tions and 100 TB of cloud storage (heavy load). We assume
the round-trip time between clouds is Tic ¼ 100 ms which
is added in the completion time simulation for multi-
cloud. In reality, large clouds are heavily geographically
distributed, and the inter-cloud round-trip time should of-
ten be lower than 100 ms.

Scenario 1: Table 1 shows the detailed cost of the best
multi-cloud allocation, and the best single-cloud alloca-
tions for all three sets of SLA constraints. In Table 1,
Costab denotes the total monthly operating cost of load a
where 1 is the light, 2 is the medium and 3 is the heavy
load, and b 2 {MC (multi-cloud), A, B, C}.

In this scenario, multi-cloud allocations always have
the lower cost than the best single-cloud allocation for
all considered cloud applications. Multi-cloud allocations
achieve a net-cost savings of $970–3400 per month
compared to single-provider allocations. For many of the
SLA constraints and application workflows, only alloca-
tions on Provider A produce a viable single-cloud solution.
Provider B’s computation performance is so low for some
micro-tasks that it does not even satisfy the relaxed
‘‘min + 2 s’’ constraint. Also, Provider C does not offer DB
services, and thus cannot produce viable single-cloud
solutions in this scenario. In the scientific computing case,
only the multi-cloud allocation provides a viable solution,
even with additional inter-cloud delay. Hence, we can
tion allocation on multiple public clouds, Comput. Netw. (2014),
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Table 2
Scenario 2: Evaluation results (total monthly cost in dollars) with compute and cloud storage services.

Application min + 0.5 s min + 1 s min + 2 s

ebus Cost1MC = 2066 Cost1MC = 2066 Cost1MC = 2066
Cost2MC = 2750 Cost2MC = 2750 Cost2MC = 2750
Cost3MC = 8780 Cost3MC = 8780 Cost3MC = 8780
Cost1A = 4944 Cost1A = 4454 Cost1A = 3906
Cost2A = 5709 Cost2A = 5219 Cost2A = 4669
Cost3A = 12,609 Cost3A = 12,119 Cost3A = 11,569
Cost1C = 2315 Cost1C = 2315 Cost1C = 2315
Cost2C = 2899 Cost2C = 2899 Cost2C = 2899
Cost3C = 8496 Cost3C = 8496 Cost3C = 8496

game Cost1MC = 2002 Cost1MC = 2002 Cost1MC = 2002
Cost2MC = 2686 Cost2MC = 2686 Cost2MC = 2686
Cost3MC = 8716 Cost3MC = 8716 Cost3MC = 8716
Cost1A = 4026 Cost1A = 3781 Cost1A = 3353
Cost2A = 4791 Cost2A = 4546 Cost2A = 4118
Cost3A = 11,691 Cost3A = 11,446 Cost3A = 11,018
Cost1C = 2250 Cost1C = 2250 Cost1C = 2250
Cost2C = 2834 Cost2C = 2834 Cost2C = 2834
Cost3C = 8432 Cost3C = 8432 Cost3C = 8432

storage Cost1MC = 2244 Cost1MC = 2244 Cost1MC = 2229
Cost2MC = 3009 Cost2MC = 3009 Cost2MC = 2812
Cost3MC = 9909 Cost3MC = 9909 Cost3MC = 8410
Cost1A = 3230 Cost1A = 3230 Cost1A = 2863
Cost2A = 3995 Cost2A = 3995 Cost2A = 3628
Cost3A = 10,895 Cost3A = 10,895 Cost3A = 10,528
C cannot achieve C cannot achieve Cost1C = 2229

Cost2C = 2812
Cost3C = 8410

multimed Cost1MC = 2341 Cost1MC = 2341 Cost1MC = 2326
Cost2MC = 3106 Cost2MC = 3106 Cost2MC = 2909
Cost3MC = 10,027 Cost3MC = 10,006 Cost3MC = 10,006
Cost1A = 6107 Cost1A = 4883 Cost1A = 4332
Cost2A = 6872 Cost2A = 5648 Cost2A = 5907
Cost3A = 13,772 Cost3A = 12,548 Cost3A = 11,997
C cannot achieve C cannot achieve Cost1C = 2326

Cost2C = 2909
Cost3C = 8507

sci comp Cost1MC = 2363 Cost1MC = 2341 Cost1MC = 2341
Cost2MC = 3128 Cost2MC = 3106 Cost2MC = 3106
Cost3MC = 10,027 Cost3MC = 10,006 Cost3MC = 10,006
A cannot achieve Cost1A = 4944 Cost1A = 4332

Cost2A = 5709 Cost2A = 5097
Cost3A = 12,609 Cost3A = 11,997

C cannot achieve C cannot achieve Cost1C = 2326
Cost2C = 2909
Cost3C = 8507
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clearly observe the benefits of multi-cloud allocation. It
not only provides savings in terms of net cost, but it is
also able to meet the stringent completion time require-
ments for complex cloud applications by combining the
best machines from multiple public cloud providers.

In ebus and game cases, 20–50% of relative operational
cost savings can be achieved with multi-cloud allocations
and 8–29% cost savings for the storage case compared to
the best single provider allocations. For each multimed
and sci comp case, 15–50% savings and 19–50% of opera-
tional cost savings can be achieved with multi-cloud based
on the simulation result in Table 1.

Scenario 2: We now examine the alternative imple-
mentation of workflows as defined in Section 3.2.1, where
the database is implemented on computation resources,
instead of using a cloud DB solution. We replace each
query, get and put micro-task with the mem micro-task.
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applic
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The time for the mem micro-task is calculated by taking
the time for the mem_small micro-task, which measures
access to 2 MB of data, and dividing it by 2,000. This
approximates the time to read or write 1 KB of data into
memory. We assume that all DB transactions transfer up
to 1 KB of data. All results are presented in Table 2.

In this scenario, for some application workloads and
some SLA constraints, multi-cloud allocation is either the
only one that produces a viable solution, or it produces a
much cheaper solution than single-cloud allocations. For
other application workloads and SLA constraints, however,
the best single-cloud allocation using Provider C is cheaper
or costs the same as the best multi-cloud allocation. For
example, for an e-business application, multi-cloud per-
forms best for (1) 100 K DB transactions/1 TB (light load)
and (2) 1000 K DB transactions/10 TB storage (medium
load) yielding the relative cost savings from 5% to 50%
ation allocation on multiple public clouds, Comput. Netw. (2014),
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Table 3
Scenario 3: Evaluation results (total monthly cost in dollars) with compute
and cloud DB services (Provider C is not available as a single provider).

Application min + 0.5 s min + 1 s min + 2 s

ebus Cost1MC = 328 Cost1MC = 328 Cost1MC = 328
Cost2MC = 346 Cost2MC = 346 Cost2MC = 346
Cost3MC = 346 Cost3MC = 346 Cost3MC = 346
Cost1A = 2456 Cost1A =2211 Cost1A = 1477
Cost2A = 2456 Cost2A = 2220 Cost2A = 1486
Cost3A = 2456 Cost3A = 2220 Cost3A = 1486

game Cost1MC = 165 Cost1MC = 165 Cost1MC = 165
Cost2MC = 174 Cost2MC = 174 Cost2MC = 174
Cost3MC = 174 Cost3MC = 174 Cost3MC = 174
Cost1A = 1967 Cost1A =1722 Cost1A = 1293
Cost2A = 1976 Cost2A = 1731 Cost2A = 1302
Cost3A = 1976 Cost3A = 1731 Cost3A = 1302

storage Cost1MC = 154 Cost1MC = 154 Cost1MC = 154
Cost2MC = 163 Cost2MC = 163 Cost2MC = 163
Cost3MC = 163 Cost3MC = 163 Cost3MC = 163
Cost1A = 1232 Cost1A = 1232 Cost1B = 865
Cost2A = 1241 Cost2A = 1241 Cost2B = 874
Cost3A = 1241 Cost3A = 1241 Cost3B = 874

multimed Cost1MC = 349 Cost1MC = 349 Cost1MC = 349
Cost2MC = 367 Cost2MC = 367 Cost2MC = 367
Cost3MC = 367 Cost3MC = 367 Cost3MC = 367
A cannot achieve Cost1A = 3191 Cost1A = 2150

Cost2A = 3191 Cost2A = 2159
Cost3A = 3191 Cost3A = 2159

sci comp Cost1MC = 251 Cost1MC = 240 Cost1MC = 240
Cost2MC = 260 Cost2MC = 249 Cost2MC = 249
Cost3MC = 260 Cost3MC = 249 Cost3MC = 249
A cannot achieve Cost1A = 2885 Cost1A = 2273

Cost2A = 2894 Cost2A = 2282
Cost3A = 2894 Cost3A = 2282
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compared to Provider C. As we can see from Table 2,
Cost1MC and Cost2MC are the lowest across all SLAs. How-
ever, Provider C’s cost, Cost3C , is the best for (3) 1000 K
DB transactions and 100 TB storage (heavy load) with 3–
4% cost savings over Multi-Cloud approach. Therefore, we
can clearly observe the trade-off between SLA and cost
among offered services from different providers for various
types of applications. In all of the cases where single-cloud
allocation on cloud C outperforms a multi-cloud one, the
cost of using a cloud storage service is much higher than
the cost of using compute services and the SLA restrict is
not stringent, and this dominates the overall application
deployment cost. Therefore, we can conclude that for
applications that require large storage space, a single-pro-
vider allocation may be cheaper than a multi-cloud alloca-
tion. This is especially true for the scientific computing
case, which utilizes tightly-coupled heavy storage and
compute resources, and does not have stringent task com-
pletion requirements.

Scenario 3: Next, we examine the alternative imple-
mentation of workflows as defined in Section 3.2.1, where
the storage is implemented on computation resources, in-
stead of using a dedicated cloud storage solution. We re-
place each st_1KB_up/st_1KB_down micro-task with the
io_1KB micro-task, and we replace each st_10MB_up/
st_10MB_down micro-task with the io_10MB micro-task.
The time for the io_1KB micro-task is calculated by
taking the maximum of the io_read, io_write and
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applica
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io_readwrite micro-tasks, which measure the transfer
of 100 MB of data, and dividing it by 100,000. Similarly,
the time for the io_10MB micro-task is calculated by
taking the maximum of the io_read, io_write and
io_readwrite micro-tasks, which measure the transfer
of 100 MB of data, and dividing it by 10. All of the results
are presented in the table.

In this scenario, multi-cloud allocations provide signifi-
cant cost savings for all test cases over all SLAs. The savings
range from $700 to $2800 per month. In the multi-media
and scientific computing cases, the only viable solution is
the multi-cloud one. Often, the resulting resource alloca-
tion chooses the best compute machines from C and DB
services from A. This scenario clearly demonstrates the
benefits of the multi-cloud approach where the best re-
sources are pooled from multiple providers – the obtained
performance is potentially better, and the overall cost is
clearly substantially cheaper. In particular, in all cases,
Multi-Cloud approach provides 80–91% relative cost sav-
ings over the best single Provider A as shown in Table 3.

Scenario 4: Finally, we examine the alternative imple-
mentation of workflows as defined in Section 3.2.1, where
both DB and storage solutions are implemented on com-
pute resources. We replace each query, get and put mi-
cro-task with the mem micro-task, each st_1KB_up/
st_1KB_down micro-task with the io_1KB micro-task,
and each st_10MB_up/st_10MB_down micro-task with
the io_10MB micro-task. In this scenario, the best solution
is always the single-cloud one, regardless of the applica-
tion workload and SLA constraints. This is because Provider
C offers the fastest compute machines at the lowest price.
Our algorithm chooses all of resources from Provider C.
Even where a micro-task’s completion time differs be-
tween providers, the difference is not large enough to war-
rant the added inter-cloud delay that a multi-cloud
solution would bring. Therefore, if application needs to
be deployed using only compute services, it pays off to stay
with a single provider.

4.2. Inter-cloud data traffic

In the current cloud traffic pricing model, users pay for
egress data traffic from a public cloud per bandwidth
usage, but ingress traffic to a cloud is free. For the multi-
cloud allocations proposed in this paper, an application
provider would benefit from cheaper resources but would
need to pay the cost for inter-cloud data transfer each time
data goes between different public clouds. In this section,
we quantify the allowable minimum and maximum in-
ter-cloud traffic that could be supported with the cost sav-
ings achieved from the multi-cloud allocation. Using
published prices for egress data transfer [20–22], we esti-
mate the minimum and maximum inter-cloud data trans-
fer budget by taking the difference between the best cost of
a single provider and the cost of multi-cloud allocations,
and translating into an allowable extra network traffic in
TB. This is the ‘‘break-even’’ amount of traffic. Anything
less would still result in some cost savings for the applica-
tion provider, while anything more would mean that the
application provider needs to pay more for a multi-cloud
allocation than if they hosted their application on a single
tion allocation on multiple public clouds, Comput. Netw. (2014),
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Fig. 3. Allowable extra data traffic in TB per month between multi-cloud and the best single provider for (a) compute, storage, and DB solution, (b) compute
and storage solution, and (c) compute and DB solution.
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cloud. The minimum and maximum amount of this ‘‘break-
even’’ inter-cloud data that can be transferred in a month is
shown in Fig. 3 for the Scenarios 1, 2 and 3. Since there is
no advantage to using multi-cloud resource allocation over
single-cloud allocation in Scenario 4, we do not show it in
this figure.

We observe that the ‘‘break-even’’ amount of traffic is
significant in Scenarios 1 and 3, across all tested cloud
applications. This is because these two Scenarios use
compute and DB services, where there is a significant dif-
ference in performance and price between Providers A
(best for DB, poor for compute) and C (best for compute,
no DB services available). We expect that realistic cloud
applications would easily transfer less than this ‘‘break-
even’’ amount of traffic between their components in a
month, making the multi-cloud resource allocation a
profitable choice for application providers. On the other
hand, in Scenario 2, the ‘‘break-even’’ amount of traffic
is significant only for the highest workload in multimed,
storage and sci comp applications. These are the applica-
tions that heavily use storage service, transferring large
blobs, which dominates the allocation cost. Since storage
services are similarly priced between providers, gains of
multi-cloud allocation are evident only when storage
use is large, exposing the price differences. Again, we ex-
pect that for realistic cloud applications which provide
cloud storage, multimedia or scientific computing ser-
vices, the gains of the multi-cloud resource allocation
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applic
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would be more than sufficient to cover the cost of in-
ter-cloud data transfer.
5. Conclusion

With increased differentiation in cloud providers’ ser-
vice offers, allocation of application components on multi-
ple clouds becomes an attractive option. Our evaluation
shows that such allocation provides significant cost sav-
ings over single-cloud allocations in a variety of realistic
cloud use scenarios. While multi-cloud allocation carries
additional delay and cost due to inter-cloud communica-
tion, its performance gains and cost savings are still signif-
icant. In particular, we have observed that the cost benefit
of multi-cloud is substantial when applications are de-
ployed over separate and dedicated compute, DB, and stor-
age services.

Further, application providers may have different prior-
ities – some may want to minimize task completion time
at any cost (e.g., a search service), while others may want
to minimize the cost and accept higher service delays
(e.g., an image processing or a genome sequencing service).
In mobile cloud applications, compute/storage intensive
tasks can be offloaded to mobile devices instead of to a
cloud infrastructure if bandwidth is very limited. Our
proposed framework is general and can be applied to mul-
tiple optimization goals. Our allocation algorithm exposes
ation allocation on multiple public clouds, Comput. Netw. (2014),
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sufficient information to let application providers find
their own ‘‘sweet spot’’ in the price/performance trade-off.
References

[1] A. Li, X. Yang, S. Kandula, M. Zhang, Cloudcmp: comparing public
cloud providers, in: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ACM, 2010, pp. 1–14.

[2] Netflix Hit by Outage, Blames Amazon, The Wall Street Journal,
December 25, 2012.

[3] Z. Wu, H.V. Madhyastha, Understanding the latency benefits of
multi-cloud webservice deployments, ACM SIGCOMM Comput.
Commun. Rev. (2013) 13–20.

[4] A. Celesti, F. Tusa, M. Villari, A. Puliafito, How to enhance cloud
architectures to enable cross-federation, in: Proceedings of the 3rd
IEEE International Conference on Cloud Computing (CLOUD), 2010,
pp. 337–345.

[5] B. Rochwerger, D. Breitgand, D. Hadas, I. Llorente, R. Montero, P.
Massonet, E. Levy, A. Galis, M. Villari, Y. Wolfsthal, et al., The
reservoir model and architecture for open federated cloud
computing, IBM J. Res. Dev. 53 (4) (2009) 4–11.

[6] L.F. Bittencourt, E.R. Madeira, N.L. da Fonseca, Impact of
communication uncertainties on workflow scheduling in hybrid
clouds, in: Proceedings of the IEEE Global Communications
Conference (GLOBECOM), 2012, pp. 1623-1628.

[7] M. Bjorkqvist, L.Y. Chen, W. Binder, Cost-driven service provisioning
in hybrid clouds, in: Proceedings of the 5th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA),
2012, pp. 1–8.

[8] P. Mell, T. Grance, The NIST Definition of Cloud Computing (draft),
vol. 80, NIST Special Publication, 2011, p. 145.

[9] M. Hajjat, X. Sun, Y.-W.E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
M. Tawarmalani, Cloudward bound: planning for beneficial
migration of enterprise applications to the cloud, ACM SIGCOMM
Comput. Commun. Rev. 40 (2010).

[10] M. Hajjat, D. Maltz, S. Rao, K. Sripanidkulchai, et al., Dealer:
application-aware request splitting for interactive cloud
applications, in: Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, ACM, 2012,
pp. 157–168.

[11] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud
computing: a view of scientific applications, in: Proceedings of the
IEEE 10th International Symposium on Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009, pp. 4–16.

[12] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, A. Saxena, Intelligent
workload factoring for a hybrid cloud computing model, in:
Proceedings of the IEEE International Workshop on Cloud Services
(IWCS), 2009, pp. 701–708.

[13] R. Buyya, R. Ranjan, R.N. Calheiros, Intercloud: utility-oriented
federation of cloud computing environments for scaling of
application services, in: Algorithms and Architectures for Parallel
Processing, Springer, 2010, pp. 13–31.
Please cite this article in press as: S.S. Woo, J. Mirkovic, Optimal applica
http://dx.doi.org/10.1016/j.comnet.2013.12.001
[14] A. Li, X. Zong, S. Kandula, X. Yang, M. Zhang, Cloudprophet: towards
application performance prediction in cloud, ACM SIGCOMM
Comput. Commun. Rev. 41 (2011) 426–427.

[15] Amazon.com. <http://www.amazon.com>.
[16] World of Warcraft Online. <https://us.battle.net>.
[17] Dropbox. <http://www.dropbox.com>.
[18] Youtube. <http://www.youtube.com>.
[19] Penguin Computing. <http://www.penguincomputing.com>.
[20] Amazon Web Services Pricing information. <http://

aws.amazon.com/ec2/pricing/>.
[21] Windows Azure Pricing information. <http://www.windowsazure.

com/en-us/pricing/calculator/>.
[22] Google App Engine Pricing information. <https://cloud.google.com/

pricing/>.

Simon Woo is a Ph.D. candidate at USC/ISI
supervised by Prof. Jelena Mirkovic. His cur-
rent research interests include cloud com-
puting, network security, and cybersecurity
education. Also, he is a Member of Technical
Staff at the Jet Propulsion Laboratory (JPL),
Pasadena, CA. As a technologist, he conducts
networking and cybersecurity research and
development. He has been involved in net-
work and protocol simulation for NASA Con-
stellation Program and time synchronization
and QoS services development for Deep Space

Networks. Prior to joining JPL in 2005, he interned at Entropic Commu-
nications in San Diego to evaluate the protocol performance. Also, he
worked at Intel Corp. He earned his BSEE degree from Univ. of Wash-

ington, Seattle, MSEE degree from Univ. of California, San Diego, spe-
cializing in communication theory and systems, and MSCS degree from
USC.

Jelena Mirkovic is Computer Scientist at USC/
ISI and research faculty at USC. She received
her MS and PhD from UCLA, working in the
LASR group, lead by Prof. Peter Reiher. She
received BS in Computer Science and Engi-
neering from School of Electrical Engineering,
University of Belgrade, Serbia. Her research
interests span networking and security fields.
Her current research is focused on several
network security problems: botnets, denial-
of-service attacks, and IP spoofing. Addition-
ally, she is interested in methodologies for

conducting security experiments and she is working with colleagues at
USC/ISI on improving DeterLab testbed.
tion allocation on multiple public clouds, Comput. Netw. (2014),

http://refhub.elsevier.com/S1389-1286(14)00037-1/h0075
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0075
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0075
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0075
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0080
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0080
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0080
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0085
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0085
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0085
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0085
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0090
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0090
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0090
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0095
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0095
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0095
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0095
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0100
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0105
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0105
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0105
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0105
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0105
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0110
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0110
http://refhub.elsevier.com/S1389-1286(14)00037-1/h0110
http://www.amazon.com
http://https://us.battle.net
http://www.dropbox.com
http://www.youtube.com
http://www.penguincomputing.com
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://www.windowsazure.com/en-us/pricing/calculator/
http://www.windowsazure.com/en-us/pricing/calculator/
http://https://cloud.google.com/pricing/
http://https://cloud.google.com/pricing/
http://dx.doi.org/10.1016/j.comnet.2013.12.001

	Optimal application allocation on multiple public clouds
	1 Introduction
	2 Related work
	3 Multi-cloud resource allocation
	3.1 Cloud performance and cost
	3.2 Cloud applications and workloads
	3.2.1 Application workflow
	3.2.2 Resource allocation goal
	3.2.3 Resource allocation


	4 Evaluation
	4.1 Evaluation details
	4.2 Inter-cloud data traffic

	5 Conclusion
	References


