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Abstract Advances in technology have made the large-
scale deployment of low-cost networked sensors possible
for situational awareness. We developed a Simulation Tool
for the Advanced Sensors Collaborative Technology
Alliance (ASCTA) Microsensor Network Architecture
(STAMiNA) to evaluate the performance of networked
sensor systems. This tool is built upon a commercial
network simulator engine (QualNet), with extended
capabilities to include both sensing and communication
models in a discrete-event simulation environment. Using
this tool, we can simulate target detection (sensing) and
information dissemination (information fusion) via wireless
communications under different parameters and scenarios,
incorporating such metrics as target detection probabilities,
false alarm rates, and communications load, and capturing
effects of terrain and threat characteristics. An example of
tool usage is presented illustrating the comparison of
alternative microsensor network architectures such as
localized-fusion, hierarchical-fusion, and distributed-fusion
in the presence of false detection events. The trade-offs
among these three different sensor architectures are
examined under different fusion rules, sensing sliding
window sizes, and false-event occurrence rates. Operating
parameters that yield high detection and low false-alarm
performance are examined.
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1. INTRODUCTION

Pervasive availability of sensors, especially microsensors
and disposable sensors, promises significant advancements
in situation awareness for the future military force. These
benefits arise from the ability to network distributed
sensors, thereby achieving synergy through fusion of
information from different perspectives and operational
improvements in performance by execution of corroborative
actions. However, such systems exhibit high complexity,
causing system performance prediction to be extremely
challenging. There is a clear need to develop technologies
for characterizing sensor networks to understand their
potential use, based on key system parameters that capture
the essential mission aspects. In this paper, we present a
novel approach for deriving the sensing as well as
communication performance of a distributed sensor system
using a simulation environment. A microsensor network
analysis tool has been developed at the Jet Propulsion
Laboratory (JPL) as part of the Microsensors research
program in the Advanced Sensors Collaborative
Technology Alliance (ASCTA), a consortium of industry
and university organizations working with the Army
Research Laboratory. This tool is called Simulation Tool
for ASCTA Microsensor Network Architecture
(STAMiNA). It is built upon the commercial QualNet
discrete-event simulation engine, which provides a highly
capable simulation environment for wireless
communications networks.

Using STAMiNA, users can define (1) the mission
environment, including terrain features, (2) the sensed
object set, including multiple threat objects, (3) the sensor
placements, their modalities and their abilities to sense
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different object types, and false alarm rates, (4) (threat)
object trajectories, (5) sensing as well as sensed data
dissemination for information fusion, and (6) various
network configurations and formations between sensors to
examine the coupling of sensing and communication. With
these features, the simulation tool can provide the overall
system level performance of different sensor network
architecture under different parametric conditions. The
novelty of our extension is the capability to incorporate both
sensing and communications in the same tool. Target
sensing, fusion, and information dissemination via wireless
communications are simulated in a common simulation
environment, capturing the inter-related effects necessary to
determine sensor network architecture performance.

The tool is used to support analyses of alternative sensor
system architectures [1]. A comparison of localized,
hierarchical, and distributed-fusion architectures is
presented, in which sensing, false alarm, and
communications performance measures are derived. We
derive metrics including target detection and false alarm
reports under different fusion rules, sensing sliding window
sizes, and false-event occurrence rates.

This paper is organized as follows. A summary of the
capabilities of the tool is given in Section 2. In Section 3,
we present the three cluster-based sensor network
architectures used to demonstrate the tool's capabilities.
Section 4 presents the simulation performance comparison
results. Concluding remarks are discussed in Section 5.

2. STAMINA SOFTWARE CAPABILITIES

STAMiNA models sensor node laydown, multiple sensor
modalities, target behavior, cueing, multi-sensor fusion, and
communications networking, and is capable of
characterizing the performance of alternative sensor systems
in terms of probability of detection and probability of false
alarm metrics. These different simulation capabilities are
greatly accelerated by Senor Media Access Control (Sensor
MAC), which is the novel architecture built for sensing and
information dissemination in STAMiNA. To better
illustrate our tool, the following figure 1. is provided to
compare the software structure of STAMiNA with the
commonly known open systems interconnection (OSI)
reference model (RM). Internal sensor network traffic can
be generated and scheduled at the application layer. Sensor
MAC is responsible for sensing and distributing detected
data to other sensor nodes. Also, multi-modal and multi-
target tracking is configured by Sensor MAC. False alarm,
line-of-sight (LOS), and terrain effects are captured in the
physical layer.

OSIIrfeel0ceLAodel JPL-STAIhiNA

Figure 1. STAMiNA structural relationship to OSI-RM

In STAMiNA, sensor nodes are placed in either x-y (2D,
flat terrain) or x-y-z (3D) positions and are generally
assumed to be stationary. Stochastic spatial point processes
with different correlation characteristics may be generated
(e.g. "blue noise") for a more realistic node laydown in the
2-dimensional case. A general 3D terrain model that user
can freely define may be used as an input to scenarios.
Terrain blockage affects both communications signal and
sensor signal propagation. Targets move according to a
randomly or prescribed waypoint pattern and speeds may
vary. Each target continuously (unintentionally) emits
signals that are sensed when in range of the sensor nodes.
The following figure 2. captures a simulation snapshot of a
randomly generated terrain with several microsensor and
clustehead sensors deployed over the region, and a tank
(target) located near the center region.

Figure 2. Simulation with randomly generated terrain

Each sensor node in STAMiNA contains at least one radio
and at least one sensor. Each radio and each sensor is
associated with a "channel". A further description of this
software architecture was given in [2]. Different sensor
channels correspond to different sensing modalities, such as
acoustic, magnetic, etc., and each has its own defined
attributes of range and false sensor detection event rates.
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False alarm events are generated as an independent random
process at each sensor based on uniform, exponential, and
Gaussian distribution at the physical layer. STAMiNA can
model both directional (bearing) and omni-directional
sensing nodes. A general cueing mechanism is modeled
that enables a target detection event to trigger
communications. That is, as soon as a sensor detects a
target, it forwards/broadcasts a target detection message to
the destination(s) defined within the model.

and a single clusterhead. The clusters are not necessarily
disjoint.

Based on these assumptions, three different cluster-based
architectures are considered as shown in Fig. 3, where a
large circle represents a clusterhead, and a small circle
represents a microsensor. The dotted circles indicate the
communication ranges of clusterhead sensor nodes.

Multi-hop communications enable sensor system
information to be propagated among nodes and to end-
users. Non-interfering inter-cluster and intra-cluster
communications can be defined using orthogonal
communication channels. Sensor nodes communicate using
protocols based on models drawn from the rich QualNet
wireless library (including MANET multi-hop networking
choices). In addition, JPL has developed Disruption
Tolerant Networking (DTN) communication models [3] that
capture the intermittent connectivity that is known to arise
in communications that are placed low to the ground such as
microsensor nodes, and they can be used for sensor network
evaluation.

Simulation outputs include real-time animation, statistics
collection of metrics for target detection, false alarm
occurrences, and communications/target detection
forwarding activities that are logged in a statistics file for
detailed post-analyses. These utilities greatly enhance
users' abilities to process and analyze data to evaluate
different sensor network architectures.

3. SENSOR NETWORK ARCHITECTURE

In this work, we specifically consider alternative cluster-
based sensor network architectures, similar to those
proposed in [4], as an example to demonstrate the tool's
capabilities. The interactions between detection
performance and communications load for given target
trajectories are observed. Detection performance under
different false event occurrence rates and varying sensing
detection sliding window sizes and fusion thresholds are
investigated. This provides quantitative comparisons
among the proposed sensor network architectures.

In the present scope of study, two types of sensor nodes are
considered: clusterhead sensor nodes and microsensor
nodes. Clusterhead sensor nodes have more processing
power and larger sensing range than microsensor nodes.
Although microsensor nodes have relatively reduced
capabilities, it is assumed that their unit cost is much less
than than that of a clusterhead sensor node. Hence, a larger
number of microsensor nodes can be deployed.
Microsensors and clusterhead sensor nodes not only can
detect targets, but they can also communicate with each
other. In each cluster, there are multiple microsensor nodes
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Figure 3. Cluster based sensor network employing (a)
localized-fusion (b) hierarchical-fusion and (c)

distributed-fusion.

Figure 3(a) depicts a localized-fusion architecture, where
the microsensor nodes only communicate with other nodes
within its cluster; there are no inter-cluster communications
and the clusters are assumed to be disjoint. This
architecture is used as a baseline for comparison. Figure
3(b) shows a hierarchical-fusion architecture, where
microsensors communicate with their respective
clusterheads and the clusterheads handles inter-cluster
communication. The arrow lines depict the inter-cluster
communications. Figure 3(c) shows a distributed-fusion
architecture, where each microsensor and clusterhead can
communicate to sensor nodes in other clusters either
directly or multi-hopped. Hence, this is a truly distributed
sensor network architecture, where detected information
from one sensor node is propagated to all other sensor
nodes.

The distributed fusion-architecture is more robust and
resilient, since detected information takes multiple paths to
get to a clusterhead, providing spatial diversity. However,
this architecture is the most prone to false detection events
and incurs the greatest communications load. Hierarchical-
fusion sits in between the localized-fusion and distributed-
fusion schemes and can filter target detection decisions at
the clusterheads. Hence, hierarchical fusion may stop
certain false alarm reports from propagating through the
entire network.
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In [5], three different information aggregation methods were
described: majority voting (MV), distance weighted voting
(DWV) and confidence weighted voting (CWV). In [6] and
[7], spatial, temporal, and confidence dimensions were
proposed to decrease false alarm rates in data aggregation.
Our data aggregation/fusion model implements the temporal
dimension by using an adjustable time window; the spatial
dimension is implemented via clustering and intra-/inter-
cluster interactions. Hence, a target detection decision is
made at the clusterheads by gathering temporal detection
information from microsensors. The signals emitted by a
target are received at microsensors according to a
predefined sampling rate. Target detection rules at each
clusterhead are as follows: A clusterhead decides that a
target is present if it receives consecutive detection reports
from a single sensor, or simultaneous detection reports from
multiple sensors that sum to greater than a threshold (8),

where 8 is a predefined parameter at the clusterheads. The

larger 8 value will reduce the number of detection report
events. The intention is to filter out and minimize the false
detection events (system level false alarm rate).

In our localized-fusion algorithm, we adapted the MV
algorithm in [5] because it only supports intra-cluster
communication. Let si (t, t+A, r) be positive target
detection at sensor i for the time period from t to t+A, at a
sampling rate of r, where A is defined as a window size. If
a target is detected from t to t+A at sensor i, then
si (t, t+A, r) = 1. Otherwise, si (t, t+A, r) = 0. Let n be the
number of nodes in a cluster. At time t, we define the mth
clusterhead' s localized-fusion, hierarchical fusion, and
distributed fusion target detection reports as DmLF (t),
DmHF (t), and DmDF(t) as follows:

0, otherwise

DmHF (t) =

{ n K-1

i=t k=l

0, otherwise
and,

N

DtDF (t) = Esi(t,t+A,r) > 0

0 otherwise

where DjF (t) is the localized target detection made by kth
neighboring cluster (value of either 0 or 1) at time t, a is a

weighting factor parameter that allows us to incorporate
distance weighting or confidence weighting with respect to

each cluster, K is the total number of clusters, and N is the
total number of sensors deployed in the simulation.

Detection fusion occurrences DmLF (t), DmHF (t), and
DmDF (t) and aggregates of these at each clusterhead are
collected for execution runs of simulation scenarios. An
architecture with more frequent target detection reports
implies greater robustness and accuracy about situational
awareness, since it generally is able to filter out false
sensing events while providing substantial target detection
information.

The sensing sliding window parameter A has an important
affect on sensor network system performance. A larger A
will cause more detection reports, allowing more false
reports to go through. However, choosing too small a A
may cause legitimate detection events to be rejected. These
trade-offs are shown in the next section.

4. SIMULATION AND RESULTS

The performance of three different architecture is evaluated
by comparing (1) the number of target detection occurred,
D(t), against different thresholds, 8, (2) sensor detection
sliding window sizes, A, and (3) false event occurrence
rates, Pf, . Three different sensor network architectures are

simulated in a randomly generated 1500 meter x 1500 meter
terrain. The terrain contains arbitrarily generated humps
(hills) as blockage to signals, where some of sensors may
not detect the target even if the target is within the detection
range. Each architecture contains two clusters, where each
cluster is composed of a single clusterhead and seven
microsensors. For the example scenarios considered here,
two clusters are adequate to capture the detection and
communication performance of the different sensor network
architectures. Since a larger network can be decomposed
into smaller clusters, we can easily extend and generalize
the result obtained from this work to larger networks. We
model the target to follow a near straight line path with
different starting and ending points and may pass through a
cluster or traverse between clusters (on cluster borders).
For the sake of brevity, we only provide the simulation
result from a single target trajectory in the present study.
Microsensors have a sensing range of 200 meters and
clusterhead sensors have a sensing range of 400 meters and
are assumed to be omnidirectional. We chose 802.1 lb DCF
as the MAC communication protocol among other available
communication protocols in our tool for both inter- and
intra-cluster network communications. The detection
sampling rate, r, is set to once per second. The sensing
sliding detection window is varied parametrically from one
to five seconds. We compare the target detection and
information dissemination performance with the same
sensor deployments.
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The following Figure 4 shows that communication
improves target awareness time, defined as an indicator for
the instant whether the sensor node network either detects a
target or is notified about the detection of a target for a
given instant.

(a) Target detection time vs. sensor ID

1"7

Figure 4. Target awareness time using (a) localized-
fusion, (b) hierarchical-fusion, and (c) distributed-
fusion.

In this simulation, sensor nodes numbered 9 and 17 are
clusterheads. Sensor node IDs from 2 to 9 form one cluster
and 10 through 17 form the other cluster. The x-axis is the
simulation time (in sec), and the y-axis is the sensor ID.

100 120 140 160 180 200 220 240 260

Target detection time \ss. sensor ID

The triangle marks show the target detection time by each
sensor. The circle marks show the time instances when a
sensor is informed of target detection by other sensors.
Figure 4 provides the target awareness time with respect to
the three different fusion architectures. Figure 4(a) shows
target detection using localized-fusion. We clearly observe
the detection separation among clusters; the target is only
detected by nodes in cluster 1. Figure 4(b) shows target
detection and forwarding of detection information using
hierarchical-fusion. The target is detected by nodes in
cluster 1 and communicated to the clusterhead (node 17) of
cluster 2. Figure 4(c) shows target detection using
distributed-fusion. Target detection at one sensor is
immediately propagated through all reachable sensor nodes,
whereas in hierarchical-fusion, clusterhead serves as a filter
for decision making and forwarding target detection to other
clusters.

It is clear from Figure 4 that the distributed fusion case
results in the best situational awareness, although it
stimulates the greatest communications load on the network
and correspondingly consumes the most energy. The
communication performance is captured in the following
Figure 5. In Figure 5, the total number of transmissions
incurred at each sensor node to relay target detection
information are shown.

800

100 120 140 160 180 200 220 240 260

Target detection time \,s. sensor ID
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Sensor node ID

Figure 5. Communication loads incurred at each sensor

upon target detection for localized-fusion (LF),
hierarchical-fusion (HF), and distributed-fusion (DF).

100 120 140 160 180 200 220 240 260

The x-axis is the sensor ID and the y-axis is the number of
transmissions by each sensor node. For sensor node IDs 9
through 17, no relay communications occurred in the
localized-fusion architecture, since there is no inter-cluster
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communication. On the other hand, relay traffic occurred at
clusterhead (sensor ID 17) in the hierarchical-fusion
architecture for inter-cluster communication. Overall, the
distributed-fusion architecture yields approximately twice
the communication load as the hierarchical-fusion
architecture to fully propagate the target detection
information. The hierarchical-fusion scheme requires only
12 percent more communication overhead than the
localized-fusion case to achieve inter-cluster
communication. This increased communication load leads
to better detection capability by the sensor network.

In order to characterize detection performance, we
computed the number of target detection reports for each
sensor network architecture, while varying the sensing
detection sliding window size. This allows capturing the
effect of A on target detection performance for a fixed
threshold. Based on target detection reports at each sensor
node, we computed the number of target detections reported
at each clusterhead. We used threshold = 1, 2, and 3
respectively. We varied the sensing detection sliding
window size as 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 sec, and
recomputed the corresponding DLF, DHF, and DDF of each
sensor network algorithm. We set a = 1 for simplicity.
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Figure 7. Target detection reports at clusterheads with
threshold = 2, A = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 sec.
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Figure 8. Target detection reports at clusterheads with
threshold = 3, A = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 sec.
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ure 6. Target detection reports at clusterheads with
threshold = 1, A = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 sec.

The total simulation time, T, was set to be 250 sec. Figures
T 2

6, 7, and 8 show aggregated E E DLF (t),
9 ~~~~~~~~~~~~~t=lm=l

T 2 T 2

, DHFm (t), and E E DDFm (t) with respect to
t=l m=l t=l m=l

different threshold values and different window sizes. The
x-axis is the sensing detection sliding window size and the
y-axis is the number of detection reports at the clusterheads
(sum of reports at each clusterhead). We observe that larger
sensing detection sliding window size allows more
detection events to occur, regardless of threshold and sensor
network architectures. The distributed architecture yields
the highest detection occurrences as the sensing detection
sliding window size increases. However, the cost of
doubled communication load only resulted in 20 to 35
percent increase in detection reports, comparing distributed-
fusion with hierarchical-fusion. When A < 3 and
threshold > 2, the detection performance of distributed-
fusion is worse than any other scheme. This is because data

6



is sampled at every second and it is meaningful to have
minimum window size = 2 to receive two reports at the
clusterhead when threshold = 2. The same was found to be
true when threshold = 3. From the simulation, three
seconds window size is abundant to receive reports from
other sensors.

To further explore the detection performance with different
thresholds, Figure 9 is provided. The x-axis is the threshold
and the y-axis is the number of detection events occurred
normalized by the number of detection events occurred with
the same window size and threshold = 1.

0J,
3

Trajectory 1

0.95 Figure 10. The total number of false target detection
reported at clusterhead of each architecture.

0.9

0.85 _

0.8 LF(win=3)
HF(win=3)

f! DF(win=3)

0.75 LF(win=5)
HF(win=5)
DF(win=5)

0.7
2

threshold
3

Figure 9. The Normalized detection performance with
different threshold values and different window sizes.

The reason for normalizing is that we can clearly observe
the relative target detection occurrence reductions due to
increased threshold values with fixed sensing detection
sliding window sizes. As the threshold value is increased
from 1 to 3, the number of detection reports decreases and
the percentages drops in all three sensor system
architectures. The large threshold value suppresses more

detection events from being reported. The reductions were

more significant for window size = 3 than window size = 5.
By increasing the threshold, about 5 to 50 percent
reductions have been observed depending on the
architecture and the choice of window size, threshold value,
and target trajectories. In general, we can clearly examine
that detection performance increases as window sizes
increases and threshold decreases.

In addition, we generated independent random false sensing
events at each sensor with a probability, Pfa' of 0.005 to

observe the detection performance under varying false
sensing event rates. The combinations of two different
thresholds and three sensing detection sliding window sizes
are used to observe the performance impact caused by
increased false detection event rates. Figure 10 shows the
total number of false target detection reports received at
clusterheads with respect to different sensing detection
sliding window sizes and false detection event rates.

As we increase the detection sliding window size, more

false target detections are reported in clusterheads, due to
the large A. Also, higher false detection event generation
rates at each sensor increases the total number of false
reports for all three architectures. We can observe that the
number of false alarms occurred at clusterheads with
distributed-fusion architecture is almost 1.5 times more than
the hierarchical-fusion architecture and twice more than the
localized-fusion architecture when the threshold is small (2)
and the window A is large (5). Therefore, we verified
from Figure 10 that the distributed-fusion architecture is
more vulnerable to false detection events than the
hierarchical-fusion or localized-fusion architectures.

Figure 11 captures the false alarm report suppression with
increasing the decision threshold. In Figure 11, the x-axis is
the threshold and the y-axis the total number of false target
detections reported by the clusterheads. The false detection
event rate is fixed at Pf, = 0.005.
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As we can observe, increasing the threshold eliminates the
false reports more than half, particularly, for high false
detection event occurrence rate coupled with a large sensing
detection sliding window size. Additional investigations
(not shown above) using STAMiNA have revealed that for
varying Pfa' the false alarm report rate scales in both

abscissa and ordinate dimension with respect to the
threshold parameter.

5. CONCLUSIONS

In this paper, we presented the sensor network simulation
tool STAMiNA, which is suitable for evaluating and
characterizing different sensor network architectures. We
provided examples determining performance for alternative
sensor network architectures. The system level detection
and false alarm performance were analyzed and trade-offs
characterized as a function of decision threshold and
sensing window parameter sizing. The simulation results
illustrated STAMiNA's capacity to provide accurate system
level performance for the complex inter-relationships that
occur among sensing and communications networking, and
facilitate architectural level decisions for networked sensor
system design. We numerically show that the hierarchical-
fusion architecture yields the good detection performance as
well as robustness against false-alarm. Hence, we can
conclude that the hierarchical-fusion is the reasonable
sensor network architecture incorporating the advantages of
localized and distributed-fusion architecture.

Further research is needed to route target detection
information more efficiently in a harsh communication
environment. An especially interesting future research
pursuit is to explore Disruption Tolerant Networking
(DTN), where a store-and-forward architecture is suitable
for such operating conditions.
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