
AMON-SENSS: Scalable and Accurate Detection of
Volumetric DDoS Attacks at ISPs

Rajat Tandon∗, Pithayuth Charnsethikul∗, Michalis Kallitsis†, and Jelena Mirkovic∗
∗University of Southern California Information Sciences Institute, Marina Del Rey, CA, USA

†Merit Network Inc., Ann Arbor, MI, USA

Abstract—Distributed Denial of Service attacks continue to be
a severe threat to the Internet, and have been evolving both in
traffic volume and in sophistication. While many attack detection
approaches exist, few of them provide easily interpretable and
actionable network-level signatures. Further, most tools are either
not scalable or are prohibitively expensive, and thus are not
broadly available to the network operator community.

We bridge this gap by proposing AMON-SENSS, an open-
source system for scalable, accurate DDoS detection and signa-
ture generation in large networks. AMON-SENSS employs hash-
based binning with multiple bin layers for scalability, observes
traffic at multiple granularities, and deploys traffic volume and
traffic asymmetry change-point detection techniques to identify
attacks. It proactively devises network-level attack signatures,
which can be used to filter attack traffic. We evaluate AMON-
SENSS against two commercial defense systems, using 37 days of
real traffic from a mid-size Internet Service Provider (ISP). We
find that our proposed approach exhibits superior performance in
terms of accuracy, detection time and network signature quality
over commercial alternatives. AMON-SENSS is deployable today,
it is free, and requires no hardware or routing changes.

I. INTRODUCTION

Distributed denial-of-service (DDoS) attacks are increasing
in volume and frequency [1], [2]. A recent report from
NetScout [3] reveals that more than 5 M attacks occurred
between January and June 2021, including multiple attacks
exceeding 1 Tbps. Many networks today handle volumetric
DDoS attacks by purchasing either in-network commercial
defense appliances, or by subscribing to cloud-based DDoS
defense services. In both cases, the commercial defense pro-
files the traffic to the potential targets and derives a network
signature, specifying the target and traffic ports and protocols.
The defense uses this signature to filter attacks. A commercial
defense can also resort to deep packet inspection or other
more sophisticated traffic analyses when filtering traffic, to
minimize collateral damage. Commercial defenses have two
downsides: cost and lack of transparency. While clouds offer
basic business plans relatively cheaply (e.g., $200 per month
for CloudFlare, $3,000 per year for AWS Shield), the price
quickly increases for larger networks or networks carrying
larger traffic volumes. Commercial appliance costs range from
tens to hundreds of thousands of dollars. Commercial defenses
further employ proprietary algorithms to devise filtering rules,
and there are no independent evaluations of their accuracy.

In many cases volumetric DDoS attacks could be handled
by the target network or the target’s upstream ISP, foregoing

the cost and uncertain performance of commercial defenses.
ISPs are especially well positioned for this task – they already
handle high traffic volumes, they are rarely overwhelmed by
DDoS attacks launched at their customers, and they have close
relationships with their customers and interest to protect them.
If the attack’s target or its ISP could accurately detect attacks
and devise accurate filtering rules, these rules can be installed
automatically, and for free, in existing firewalls and switches,
at the target or at their first-hop ISP. The research gap here
is that there are no publicly available solutions, which detect
DDoS attacks at scale (e.g., at ISP-size networks with millions
of potential targets), and produce accurate network signatures
for filtering.

We propose AMON-SENSS, an open-source, scalable, flow-
level DDoS detection for ISPs. AMON-SENSS employs bin-
ning to make detection scalable at the ISP level, and employs
layers of bins to reduce false alerts. AMON-SENSS works
offline using existing flow capture tools, analyzes traffic at
multiple granularities and detects an anomaly when both
volume and asymmetry of the traffic in a bin increase for a
sustained time period. While anomaly-based DDoS detection
has been widely explored in the past (e.g., [4]–[6]), the
novelty of AMON-SENSS lies in scalability of its detection,
and the ability to produce accurate attack signatures, which
can be immediately deployed at existing firewalls. This de-
ployability (offline detection using existing traffic captures,
ready-to-deploy firewall rules) distinguishes AMON-SENSS
from other research approaches, which classify traffic flows
instead of producing attack traffic signatures, and are much
less deployable. Flow classification must work in line with
traffic, so flows classified as attack can be immediately filtered.
Inline deployment requires new hardware. Many classification
approaches also deploy machine learning, and thus deploy-
ment must support line-rate machine learning, which network
devices do not support today.

We further show that AMON-SENSS offers superior per-
formance compared to two commercial defense solutions,
NetScout [7] and FastNetMon [8]. Using 37 days of real traf-
fic from a mid-size ISP FRGP, AMON-SENSS outperforms
commercial approaches both in accuracy (F1-score of 92–99%
versus NetScout’s 26–70% and FastNetMon’s up to 2%) and
in detection speed (AMON-SENSS’s detection delay is less
than a third of the NetScout’s). We release AMON-SENSS as
open-source at [9].978-1-6654-3540-6/22 © 2022 IEEE

II. RELATED WORK

Many solutions to detect DDoS attacks have been proposed
in literature [10]. We discuss only those research approaches
that are closely related to AMON-SENSS in this section.

Packet-based solutions: These solutions learn feature dis-
tribution (e.g., packet length, port numbers, etc.) in legitimate
traffic, prior to attacks, and use these models to classify each
packet as attack or legitimate. PacketScore [11], Carl et al. [4],
Fouladi et al. [12], Feinstein et al. [6], Lotfollahi et al. [13],
Yuan et al. [14], Bardas et al. [15], and Kitsune [16] are ex-
amples of packet-based approaches. These approaches can be
very accurate, but they are not practical. First, many networks
only collect sampled NetFlow data, and not packet data, due
to scale challenges. Second, packet classification approaches
must be installed inline, so that they can immediately filter
packets they identify as attacks. Machine learning and line-
rate packet classification require special hardware, which many
networks do not have today.

Flow-based solutions: Similar to packet-based solutions,
some flow-based solutions focus only on flow classification
problem, using clustering or machine learning (e.g., [5]).
These approaches have the same deployment challenge as
packet-based approaches – they must be deployed inline
on special hardware. Other flow-based approaches work to
identify attack sources, such as Braga et al. [17], Simpson
et al. [18], Xu and Liu [19], and Doshi et al. [20]. Source
identification is useful, but not practical for mitigation, as
attack sources can be spoofed or there can be more sources
than filtering rules that can fit in today’s switches [21].

None of the related work approaches produces network-
level signatures in terms of transport ports and protocols, for
attack filtering – they simply identify the attack’s onset and in
some cases the attack’s target and sources, which is not useful
for operational DDoS defenses. Our focus is on identifying
best, concise network filtering rules via offline traffic process-
ing. Such rules can then be efficiently deployed in standard
network hardware, such as switches and firewalls. In [22],
Wagner et al. propose collaborative DDoS detection, involving
multiple ISPs, where each ISP applies simple, threshold-based
detection rules, and exchanges detection signals with others.
Our work is complementary to Wagner et al. [22], and could
replace their threshold-based detection.

III. DDOS ATTACK DETECTION

DDoS attacks come in many flavors [10], [23]–[25]. Volu-
metric attacks, such as UDP flood attack, are attacks that over-
whelm internal network capacity or even centralized DDoS
mitigation scrubbing facilities with significantly high volumes
of malicious traffic. Application-level attacks, such as flash-
crowd attacks [26] or exploit-based attacks, are attacks that
overload specific application resources with legitimate looking
requests to make the application unavailable or unresponsive
to legitimate users.

Because there are many DDoS variants, it is difficult to
design a solution that detects them all reliably. In this paper
we focus on detection of volumetric attacks, i.e., those attacks

that create a visible increase of volume of traffic to their
target. One might consider such attacks trivially detectable,
but detection is challenging at the network level. An attack
could be too small at the network level to trigger detection,
while still being large enough to overwhelm its target. The
problem is compounded at large ISPs, which route extremely
high traffic volumes in aggregate, and serve millions of
customers. Threshold-based approaches for attack detection
usually employ manually set thresholds per target IP address,
and raise alerts when incoming traffic exceeds them. Since
different attacks can be harmful at different rates, threshold-
based approaches cannot fully address the problem. Anomaly-
based approaches track legitimate traffic’s features for each
potential target IP address, and detect deviations as attacks.
Such approaches are promising, but fall short in scaling up
to millions of traffic streams, and in separating benign traffic
spikes from malicious ones.

Once an attack is detected, the defense should produce an
accurate network signature of the attack for filtering, specify-
ing IP and transport header fields, e.g., dst IP 1.2.3.4
and proto udp and src port 53. While it may be
tempting to produce signatures that specify sources of attack
traffic, such filtering rules can be bypassed if the attacker
uses IP spoofing. Even without IP spoofing, large botnet-
launched attacks can lead to thousands of filtering rules—a
scale that cannot fit into today’s switch TCAM [21]. AMON-
SENSS focuses on generation of network-level signatures,
which specify attack type and target, but not attack sources.

IV. AMON-SENSS

In this section, we describe AMON-SENSS. We discuss
how we keep scalable statistics in Section IV-A, our features in
Section IV-B, and our anomaly detection in Section IV-C. Our
proactive signature generation is described in Section IV-D and
our alarm generation in Section IV-E. We denote an IP address
as local address if it belongs to an ISP customer running
AMON-SENSS (foreign address otherwise).

A. Binning

AMON-SENSS learns models of legitimate traffic during
training, and deploys them continuously after the first training
period to perform detection. It also continuously collects data,
and updates existing models at customizable time intervals, if
no anomaly has been detected. AMON-SENSS must collect
and keep some traffic statistics to build models of legitimate
traffic. To achieve scalable operation at the ISP level, we adapt
the idea of binning traffic statistics, proposed by Kallitsis et al.
in AMON [27]. AMON bins traffic per source and destination
IP address. Bins are organized as a matrix and an IP is
hashed to provide the index of the row (source IP) or column
(destination IP) in the matrix. AMON periodically emits a list
of heavy-activity bins that can be used for traffic engineering
purposes, accounting and security forensics. It leverages the
Boyer-Moore majority vote algorithm [28] to identify heavy-
hitters in each bin, which could be DDoS attack targets or
attack sources (e.g., scanners).

1.2.3.4 5.6.7.880 51611 RST

Local
host

Local
pref

Foreign
port

Local
port

Local
host

Foreign
port

Local
host
Local
port

Local
pref

Foreign
port

Local
pref

Local
port

Local
host
SYN
flag

Local
pref
SYN
flag

Local
host
SYN
flag
ACK
flag

Local
pref
SYN
flag
ACK
flag

Local
host
ACK
flag

Local
pref
ACK
flag

Local
host
RST
flag

Local
pref
RST
flag

{ { { { { { { { { { { { { { { {

5.6.7.0

5.6.7.8:80
5.6.7.0:80 IP IPport port flags

source dest

flow

Fig. 1. Binning in AMON-SENSS: yellow and grey segments are different bin arrays, and the green bins will be updated with the given flow’s statistics.

We repurpose AMON’s binning idea for DDoS attack de-
tection and signature generation. We do not track behavior of
foreign hosts, but only that of local hosts. We design our bin-
ning process in a way that helps us devise network signatures
for flow filtering, to mitigate DDoS attacks. Since network
signatures specify IP addresses, ports, transport protocol and
TCP flags, we focus on these fields when binning traffic.
Because we want to be able to detect attacks on an IP address
or the entire prefix, some of our bins collect statistics per local
address, while others collect statistics per local /24 prefix.
Some attacks involve a specific service port (e.g., reflection
attacks or SYN flood attacks). To detect these attacks, some
of our bins track traffic to and from local and foreign service
ports. Some attacks also involve sending a large number of
TCP packets with specific flags (SYN, SYNACK, RST or
ACK). We use dedicated bins to track this dimension as well.

Overall, we create 16 bin arrays, each of the same size,
and call the whole structure a bin layer. An array tracks one
or a combination of traffic flow features, e.g., local IP, local
service port, combination of local IP and service port, etc. Let
us denote local host as LH, local prefix as LP, local port as Lp,
foreign port as Fp, and TCP flags as SYN, SYNACK, ACK
and RST. Each bin array tracks traffic aggregated along one of
the following flow features: (1) LH, (2) LP, (3) Fp, (4) Lp, (5)
LH and Fp, (6) LP and Fp, (7) LH and Lp, (8) LP and Lp, (9)
LH and SYN, (10) LP and SYN, (11) LH and SYNACK, (12)
LP and SYNACK, (13) LH and ACK, (14) LP and ACK, (15)
LH and RST, and (16) LP and RST. For example, bin array 9
tracks SYN flood traffic to local hosts, and bin array 5 tracks
traffic to local hosts from a specific foreign port. Each bin in
a bin array stores statistics for a set of flow feature values that
hash into that bin. Each flow contributes to some of the 16 bin
arrays, depending on the flow’s network features. We combine
flow features of interest for a given bin array into bin key, and
use a simple and fast modulo function using bin array size, to
calculate the bin index from the bin key.

Since multiple flows are binned into the same bin (e.g.,
bin 18 in the first bin array will hold aggregate statistics for
traffic to and from all local hosts whose IP address modulo bin
array size equals 18), false positives and false negatives are
possible. We address this problem in two ways. First, during
training we work to identify heavy hitter bin keys in each bin
array and dedicate to them additional, individual bins, instead
of grouping them with other keys. Second, we apply ideas

(a) Surplus

(b) Asymmetry

Fig. 2. Illustration of attack detection using statistics from one select bin in
our dataset.

from Bloom filters [29] to reduce collisions, and run AMON-
SENSS with multiple bin layers, each using a different bin
array size. This is similar to using multiple hash functions in
Bloom filters.

B. Features

AMON-SENSS keeps statistics for two features per bin:
traffic surplus (in bytes) and traffic asymmetry. All statistics
are calculated with regard to local hosts/prefixes. Let Br

and Pr be traffic volume and packets received by a local
host/prefix, and Bs and Ps be volume and packets sent by a lo-
cal host/prefix. Traffic surplus is calculated as: sur = Br−Bs,
while traffic asymmetry is calculated as asym = Pr/Ps.

Flow surplus indirectly measures the amount of traffic
received by local hosts/prefixes. We use surplus, instead of
received traffic, to differentiate between flows that engage local
servers (negative surplus, since server responses are larger than
client requests) and flows that engage foreign servers (positive
surplus, when clients become more active). DDoS attacks will
create a large traffic surplus. Traffic surplus increase is not
sufficient to detect DDoS attacks. A local host may receive
more traffic, because it became more active, or because it is
under attack.

Asymmetry measure captures the ability of the host to
handle the traffic it receives. A local server may process many
service requests, and thus have large surplus, but low asym-
metry. A local client may contact many servers, also leading
to large surplus, but low asymmetry. Increased asymmetry
itself is not sufficient to detect DDoS attacks. A host could
receive scans, which would lead to high asymmetry, but no

significant increase in traffic surplus, and should not trigger
DDoS mitigation. Only when a local host exhibits a sudden
increase in both surplus and asymmetry, can we infer that it
receives unwanted traffic that it cannot handle, i.e., that it may
be under a DDoS attack.

C. Anomaly Detection

AMON-SENSS detects a possible DDoS attack when both
traffic surplus and asymmetry in a bin are anomalous. At first,
AMON-SENSS goes through a training period, and learns
means and standard deviations of traffic surplus and asymme-
try for each bin—we call these historical profiles. After train-
ing, AMON-SENSS collects traffic measurements for each
bin and builds instantaneous profiles. After each instantaneous
profile update, AMON-SENSS runs the CUSUM algorithm [4]
to detect if the current traffic surplus and asymmetry are
anomalous, compared to the historical profile. If so, the update
is rolled back and we increase an anomaly score for the
bin. If both traffic surplus and asymmetry are normal, we
decrease the anomaly score for the bin. When the anomaly
score exceeds a score threshold S, AMON-SENSS detects a
possible DDoS attack. The score threshold’s value is correlated
with our detection delay. Larger values lead to higher detection
delay, but they reduce false positives and avoid detection of
attacks that are too short, and may end before we can trigger
mitigation. Our detection approach is illustrated in Figure 2.
Red lines represent historical values for surplus and asymmetry
for one select bin, and black lines represent the instantaneous
values over time. The yellow rectangle highlights the times
when both surplus and asymmetry exceed their historical
values, signaling an attack.

D. Signature Generation

As the anomaly score for the bin starts increasing, we
proactively generate and evaluate potential attack signatures.
Signatures are generated using only flows received by local
hosts. We generate seven types of signature candidates for
each flow that is binned, by masking or unmasking three
fields of the flow identifier: destination IP address, source
port and destination port. The flow’s transport protocol is
always included in the signature instance, and we do not
include source IP addresses. Based on the bin type, some flow
identifier fields or other flow features may be included. For
example, bins in layer 9 (LH and SYN) lead to signature
candidates that all include TCP SYN flag. Each signature
candidate collects score points for each packet matching this
signature in the current monitoring period.

Since multiple flows are binned into a given bin, we would
quickly accumulate many signature candidates, which would
increase memory cost. We address this by running Boyer
Moore majority vote algorithm [28] to only keep one signature
candidate per type (seven candidates per bin), with candidate’s
score points used as votes. The best signature candidate per
type thus matches most packets that contributed to the given
bin. When an attack is detected by AMON-SENSS in one
specific bin, all seven signature candidates from that bin are

evaluated to find the best one. We identify the candidate that is
the most specific (to minimize collateral damage), and whose
score points represent a large fraction (customizable parameter,
default value is set to 0.75) of packets received by that bin, to
ensure that filtering will be effective.

E. Visible Alert Generation

An anomalous bin with a non-empty signature leads to
alert generation by AMON-SENSS. Alerts are generated in
plaintext logs, one log line per bin layer. Each time an alert is
generated and written into a log, the anomaly signal is reset
for the given bin in a given layer. Ongoing attacks can result
in multiple, repeated alerts being logged.

Simultaneously with alert logging, we apply post-processing
to generate visible alerts, to display to operators. Visible
alerts are generated from the AMON-SENSS log by: (1)
exporting alerts that appear simultaneously in all bin layers,
(2) aggregating alerts, and (3) pruning weak alerts.

Export. We identify candidate alerts that appear simultane-
ously in all bin layers. Such alerts proceed to aggregation and
pruning.

Aggregation. Since traffic statistics are collected in multiple
bin arrays (in one given bin layer), a given attack can create
anomalies in several arrays. For example, an NTP flood to a
target may lead to alerts from bin arrays that monitor traffic to
local IP, local prefix, foreign port and the combinations of local
IP/local prefix and foreign port. Further, a target may be hit
simultaneously with multiple attacks. During aggregation, we
note the target for each alert, and aggregate all alerts pertaining
to this target within a given time interval Ton into a single
candidate alert. That candidate alert is considered active, and
goes into the pruning stage, with the number of votes denoting
how many alerts were aggregated into it.

Pruning. We prune candidates that have fewer votes than
a customizable threshold V . This helps suppress alerts for
short attacks, which do not warrant mitigation. The remaining
alerts become visible to operators. In the background, we track
each visible alert and deactivate it (generate “attack stopped”
message to operators) when it stops receiving new votes for
period Toff.

V. EVALUATION

We evaluate AMON-SENSS on Netflow traffic traces col-
lected in a mid-size US ISP, FrontRange GigaPOP (FRGP),
connecting educational, research, government and business
institutions to the Internet. Traces are collected on all
ingress/egress links between FRGP and the Internet, using
packets sampled at either 1:100 or 1:4096 rate, and cover
37 days in 2020. We provide further details in Table I. In
addition to NetFlow traces, we also have alerts generated by a
commercial DDoS appliance, NetScout, which is deployed on
one, large ingress/egress link between FRGP and its upstream
ISP. NetScout’s alerts denote start and stop times of the
attacks (as observed by NetScout), the alleged target and the
attack type, which can be easily transformed into a network-
level signature. We are in discussions with FRGP to release

TABLE I
DATASETS USED IN OUR EVALUATION

month days app. flows app. bytes
May 2020 9 2 T 30 PB

August 2020 15 3.8 T 45 PB
September 2020 13 3.3 T 40 PB

anonymized dataset (NetFlow traffic with ground truth labels,
and NetScout alerts) we used in evaluation to public. Once
available, the dataset will be released at [30]. We evaluate
AMON-SENSS against NetScout, and against an open-source
NetFlow-based DDoS detection engine, FastNetMon [31],
which is the basic, free version of the same-named commercial
tool [8]. While details of how NetScout and FastNetMon detect
attacks and determine attack type are proprietary, various
technical brochures and blog posts indicate some use of
threshold-based detection [32].

1) Ground Truth Labeling: Since we want to compare
NetScout with AMON-SENSS, we cannot use NetScout’s
alerts as ground truth. Instead we apply the approach described
in [22], [33] to identify reflection attacks in our datasets as
events where at least 10 different sources send more than
100 Mbps of traffic to a given target within the same second,
using the same source port. This approach was shown to be
accurate in Kopp et al. [33], and was also used in Wagner
et al. [22]. While accurate for ground truth labeling, this
approach requires tracking separately traffic to each of the
millions of ISP customers and thousands of ports per customer.
It is memory- and CPU-hungry, running longer than real time
and consuming up to 16 GB of memory on our datasets, and it
cannot be used for scalable DDoS detection. It is also limited
to reflection attacks only.

2) Evaluation Approach and Calibration: In our evaluation
we compare AMON-SENSS to NetScout and to an open-
source version of FastNetMon [31]. We compare the de-
tection delay of these approaches, their accuracy, and their
signature quality. We focus only on detections of reflector
attacks, which exceed 100 Mbps, because we have ground
truth for these attacks. Both AMON-SENSS and FastNetMon
use multiple parameters that determine their sensitivity and
accuracy. AMON-SENSS uses: anomaly score threshold S,
number of bins per bin array N , number of layers L, times
for attack alert aggregation Ton and Toff, and vote threshold
for pruning V . FastNetMon uses: attack detection threshold
in terms of packets per second threshold pps, attack de-
tection threshold in terms of volume threshold mbps, and
duration to keep an attack source in blocked state ban time.
We calibrate these parameters on three days of data in
the September dataset, and select best-performing settings
for full evaluation. Our settings for AMON-SENSS are:
S=60, N=3337, V =10, L=5, Ton=20 s, Toff=60 s. Our set-
tings for FastNetMon are: ban details records count=500,
ban time=3600s, threshold pps=20,000.

3) Results: Table II shows our results for AMON-SENSS,
NetScout and FastNetMon. AMON-SENSS achieves superior
performance, with F1-score of 92%–99%, and low or no false
positives and false negatives. NetScout has a significantly

TABLE II
RESULTS: A-S: AMON-SENSS, NS - NETSCOUT, FNM - FASTNETMON

data detect. gr. truth TP FP FN F1 delay

May
A-S

12
12 2 0 0.92 27 s

NS 7 1 5 0.70 99 s
FNM 11 26.5 K 1 0.0008 43 s

Aug
A-S

39
38 5 1 0.92 17 s

NS 7 8 31 0.26 75 s
FNM 24 13.5 K 15 0.004 61 s

Sep
A-S

126
126 3 0 0.99 20 s

NS 38 15 70 0.47 66 s
FNM 106 11.6 K 20 0.02 78 s

lower F1-score of 26–70%, mostly due to large false negatives.
NetScout’s false negatives occur either on short attacks (under
one minute) or on attacks that are under 1 Gbps, potentially
due to thresholding issues. FastNetMon fares the worst—it has
many false positives, leading to F1-score of 2% or less. Fast-
NetMon fails to identify multiple reflection attacks, such as
CLDAP amplification. With regard to detection delay, AMON-
SENSS has a detection delay of under 30 seconds from attack
onset, while NetScout and FastNetMon take 2–3 times as
long. We further evaluate the quality of signatures for AMON-
SENSS, NetScout and FastNetMon by comparing them with
ground-truth signatures for all true positives. When a ground
truth attack involves several attack vectors, a signature may
match the ground-truth partially (only for some vectors) or
fully (for all vectors). AMON-SENSS achieves 60% full
matches and 40% partial matches, compared to NetScout’s
57% full and 43% partial matches, and FastNetMon’s 100%
partial matches. AMON-SENSS thus clearly produces the
most accurate signatures. Another way to measure signature
quality is to evaluate how well the signature filters attack
traffic. We measure the amount of attack traffic dropped by
AMON-SENSS, NetScout or FastNetMon, and compare it to
the ideal case, which uses signatures derived from the ground
truth. AMON-SENSS filters 80% of the ground-truth attack
traffic, while NetScout filters only 46%, due to larger detection
delay and some false negatives. FastNetMon filters 56% of the
ground-truth attack traffic. AMON-SENSS further achieves
98% precision (98% of filtered traffic is indeed attack, 2%
is dropped due to false positives), compared to NetScout’s
99%, and FastNetMon’s 71%. Thus overall, AMON-SENSS’s
signatures have the highest quality.

4) Sensitivity Analysis: In this Section we explore how
performance of AMON-SENSS depends on values of its pa-
rameters, using select three days from the September dataset.
For space reasons, we summarize results.

Score threshold S. We experimented with thresholds for
anomaly score 5–60. Lower values slightly increased false
positives.

Number of bins per bin array N . We explored values
1 K–64 K. Larger values reduce errors (false positives and
false negatives), but the gain is small. False negatives stabilize
once we exceed 3 K bins. False positives are better handled by
increasing the number of layers than by increasing the number
of bins.

Number of bin layers L and voting threshold V . We
jointly explored these parameters, evaluating 1–10 bin layers

and V ={1-20}. Increasing the number of layers and voting
threshold improves F1-score, but the improvement decreases
above 5 layers, and V =10.

Alert aggregation times Ton and Toff. We explore values
5–200 sec. for these two parameters. While Toff variation
does not change AMON-SENSS’s performance, increasing
Ton increases false positives, while lowering detection delay.
Optimal values for Ton are 20–30 s.

5) Operational Cost: On Intel Xeon 3.2GHz CPU with
4 cores, AMON-SENSS processes a day of traffic in seven
hours, with 10 layers and 3,337 bins per bin array, consuming
up to 11 GB of memory. Speed and memory cost scale linearly
with N and L parameters. For example, with 1 layer and 3,337
bins, it takes around 0.75 hours to process a day of traffic.
Thanks to binning, memory cost stays constant when the size
of the monitored network or traffic volume change.

VI. CONCLUSIONS

In this work, we propose a scalable, accurate, open-source
DDoS detection system, AMON-SENSS. AMON-SENSS em-
ploys binning and layering to collect traffic statistics in a
scalable manner, and observes traffic at multiple granularities.
AMON-SENSS applies anomaly detection using traffic surplus
and asymmetry, and proactively collects and evaluates network
level signatures. We evaluate AMON-SENSS against two
commercial defense systems using 37 days of real traffic from
a mid-size ISP. We find that AMON-SENSS exhibits superior
performance in terms of accuracy, latency and network signa-
ture quality over these commercial alternatives, and we release
it as open-source at [9].

VII. ACKNOWLEDGMENT

This material is based on research sponsored by the De-
partment of Homeland Security (DJ-IS) Science and Tech-
nology Directorate, Homeland Security Advanced Research
Projects Agency (HSARPA), Cyber Security Division (DHS
S&T/HSARPA CSD) BAA HSHQDC-14-R-B0005, and the
Government of UK of Great Britain and Northern Ireland
via contract number D15PC00184. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Department
of Homeland Security, the U.S. Government, or the Govern-
ment of UK of Great Britain and Northern Ireland.

REFERENCES

[1] Imperva, 2020, https://tinyurl.com/y5jmjuzv.
[2] “DDoS Attack Trends for Q4 2021.” https://tinyurl.com/tkjy584w.
[3] “The Long Tail of Attacker Innovation.” https://tinyurl.com/yp74j3f8.
[4] G. Carl, G. Kesidis, R. Brooks, and S. Rai, “Denial-of-service

attack-detection techniques,” IEEE Internet Computing, vol. 10, no. 1,
pp. 82–89, 2006.

[5] X. Qin, T. Xu, and C. Wang, “DDoS Attack Detection Using Flow
Entropy and Clustering Technique,” in International Conference on
Computational Intelligence and Security (CIS), 2015, pp. 412–415.

[6] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred,
“Statistical approaches to DDoS attack detection and response,” in
Proceedings DARPA Information Survivability Conference and
Exposition, vol. 1, 2003, pp. 303–314 vol.1.

[7] “Arbor DDoS,” https://www.netscout.com/arbor-ddos.

[8] “FastNetMon,” https://fastnetmon.com/.
[9] “AMON-SENSS code,”

https://github.com/jelenamirkovic/AMON-SENSS.
[10] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed

denial-of-service attack, prevention, and mitigation techniques,”
International Journal of Distributed Sensor Networks, vol. 13, no. 12,
p. 1550147717741463, 2017.

[11] Y. Kim, W. C. Lau, M. C. Chuah, and H. Chao, “Packetscore: a
statistics-based packet filtering scheme against distributed
denial-of-service attacks,” IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 2, pp. 141–155, 2006.

[12] F. Fouladi, E. Kayatas, and E. Anarim, “Statistical measures:
Promising features for time series based DDoS attack detection,” in
MDPI Proceedings, vol. 2, no. 2, 2018, p. 96.

[13] M. Lotfollahi, J. Siavoshani, H. Zade, and M. Saberian, “Deep packet:
A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[14] X. Yuan, C. Li, and X. Li, “DeepDefense: identifying DDoS attack via
deep learning,” in SMARTCOMP. IEEE, 2017, pp. 1–8.

[15] A. G. Bardas, L. Zomlot, S. C. Sundaramurthy, X. Ou, S. R.
Rajagopalan, and M. R. Eisenbarth, “Classification of UDP Traffic for
DDoS Detection.” in LEET, 2012.

[16] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,”
NDSS, 2018.

[17] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE Local Computer Network
Conference, 2010, pp. 408–415.

[18] K. A. Simpson, S. Rogers, and D. P. Pezaros, “Per-host DDoS
mitigation by direct-control reinforcement learning,” Transactions on
Network and Service Management, vol. 17, no. 1, pp. 103–117, 2019.

[19] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in
IEEE INFOCOM. IEEE, 2016, pp. 1–9.

[20] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE
Security and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[21] R. Li, Y. Pang, J. Zhao, and X. Wang, “A tale of two (flow) tables:
Demystifying rule caching in openflow switches,” in International
Conference on Parallel Processing, ser. ICPP 2019, 2019.

[22] D. Wagner, D. Kopp, M. Wichtlhuber, C. Dietzel, O. Hohlfeld,
G. Smaragdakis, and A. Feldmann, “United we stand: Collaborative
detection and mitigation of amplification ddos attacks at scale,” in
ACM SIGSAC CCS, 2021, pp. 970–987.

[23] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication
Review, vol. 34, no. 2, pp. 39–53, 2004.

[24] A. Srivastava, B. Gupta, A. Tyagi, A. Sharma, and A. Mishra, “A
recent survey on ddos attacks and defense mechanisms,” in
International Conference on Parallel Distributed Computing
Technologies and Applications. Springer, 2011, pp. 570–580.

[25] R. Tandon, “A survey of distributed denial of service attacks and
defenses,” 2020, https://arxiv.org/pdf/2008.01345.pdf.

[26] R. Tandon, A. Palia, J. Ramani, B. Paulsen, G. Bartlett, and
J. Mirkovic, “Defending web servers against flash crowd attacks,” in
ACNS. Springer, 2021, pp. 338–361.

[27] M. Kallitsis, S. Stoev, S. Bhattacharya, and G. Michailidis, “AMON:
An open source architecture for online monitoring, statistical analysis,
and forensics of multi-gigabit streams,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 6, pp. 1834–1848, 2016.

[28] R. S. Boyer and J. S. Moore, “MJRTY—a fast majority vote
algorithm,” in Automated Reasoning. Springer, 1991, pp. 105–117.

[29] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[30] “COMUNDA – Community Understanding of Network Datasets,”
https://comunda.isi.edu.

[31] “FastNetMon,” https://github.com/pavel-odintsov/fastnetmon.
[32] “Network Telemetry for DDoS,” https://linkmeup.ru/blog/927/.
[33] D. Kopp, C. Dietzel, and O. Hohlfeld, “DDoS never dies? An IXP

perspective on DDoS amplification attacks,” in International
Conference on Passive and Active Network Measurement. Springer,
2021, pp. 284–301.

