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ABSTRACT
IP address blacklists are a useful defense against various
cyberattacks. Because they contain IP addresses of known
offenders, they can be used to preventively filter unwanted
traffic, and reduce the load on more resource intensive de-
fenses. Yet, blacklists today suffer from several drawbacks.
First, they are compiled and updated using proprietary me-
thods, and thus it is hard to evaluate accuracy and freshness
of their information. Second, blacklists often focus on a sin-
gle attack type, e.g., spam, while compromised machines are
constantly and indiscriminately reused for many attacks. Fi-
nally, blacklists contain IP addresses, which lowers their ac-
curacy in networks that use dynamic addressing.

We propose BLAG, a sophisticated approach to select,
aggregate and selectively expand only the accurate pieces of
information from multiple blacklists. BLAG calculates in-
formation about accuracy of each blacklist over regions of
address space, and uses recommendation systems to select
most reputable and accurate pieces of information to agg-
regate into its master blacklist. This aggregation increases
recall by 3–14%, compared to the best-performing blacklist,
while preserving high specificity. After aggregation, BLAG
identifies networks that have dynamic addressing or a high
degree of mismanagement. IP addresses from such networks
are selectively expanded into /24 prefixes. This further in-
creases offender detection by 293–411%, with minimal loss
in specificity. Overall, BLAG achieves high specificity 85–
89% and high recall 26–61%, which makes it a promising
approach for blacklist generation.

1. INTRODUCTION
Compromised devices are constantly being drafted into

botnets and misused for attacks, such as sending spam and
phishing emails [71], scanning for vulnerabilities, participat-
ing in denial-of-service attacks [27, 32, 84], and spreading
malware [79]. IP blacklists (“blacklists” for short), which
contain identities of prior known offenders, can be helpful
as the first-layer defense. Assuming that prior offenders are
likely to reoffend, filtering traffic from blacklisted sources
can proactively prevent recurrent attacks. It also helps dur-
ing high-volume attacks, such as denial of service or worm

spread, because it reduces load on more resource-intensive
defenses, such as network intrusion detection systems [68]
and DDoS scrubbers [13]. Blacklists are widely used by net-
work providers [45] and researchers [67,72,75,83], but they
have several drawbacks, which we seek to address in this
paper.

Blacklists are created by organizations, which monitor some
regions of the Internet for specific malicious activities. This
limited observation introduces two deficiencies. First, bla-
cklists are often attack-type-specific and will miss offenders
who engage in a different malicious activity (e.g., a spam
blacklist will contain known spammers but not known boot-
ers). On the other hand, compromised hosts are traded on
black market and reused for many malicious activities [53,
79, 81, 87], indiscriminately and consistently. A host, which
sends spam today could engage in DDoS or spread ransomware
tomorrow. Thus, it would make sense to create generic bla-
cklists, which aggregate information from attack-type-specific
lists, to increase offender detection. Second, blacklists accu-
racy may vary a lot. A blacklist may miss certain attacks,
because they occur in parts of the Internet that the blacklist’s
maintainer cannot observe (e.g., a US-based spam blacklist,
created by analyzing e-mails on a large mail server, may miss
spam attacks launched by Chinese hosts on Brazilian users).
A blacklist may also miss observable attacks, or falsely list
legitimate addresses, depending on the tuning of its detec-
tion algorithm. Thus, each blacklist will have portions of
accurate information, which we would want to include in ag-
gregation, and portions of inaccurate information, which we
would want to exclude. To achieve such selective aggrega-
tion, we need a way to identify regions of the Internet address
space where a given blacklist performs well or poorly. Third,
blacklists may miss offenders or falsely filter legitimate traf-
fic due to dynamic addressing [56, 64, 67]. Blacklists are
also reactive, and will miss new offenders from networks
that have historically harbored offenders in the past [87]. We
would like to identify such dynamic and mismanaged net-
works, where we can replace blacklisted addresses with pre-
fixes to improve offender detection. We would also like to
perform such expansion selectively, i.e., only when it does
not lead to large increase in false positives.

In this paper we propose BLAG, a sophisticated blacklist
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aggregation approach, which addresses the problems we out-
lined. BLAG aims to increase recall (rate of offender iden-
tification or true positives) over individual blacklists, while
maintaining high specificity (low rate of false identification
or false positives). BLAG has three novel contributions, com-
pared to prior work on blacklist aggregation [77, 83].

1. It uses an estimate of false positives (specificity) over
different blacklists and IP-address regions to identify
areas of blacklists to aggregate. This increases speci-
ficity of the aggregated master blacklist by 3.9–10.9%,
when compared with naive aggregation of all blackli-
sts.

2. It uses recommendation systems to overcome informa-
tion sparsity problem in blacklists. This helps BLAG
rely on good reputation of some blacklists to boost weak
signals and increase recall. BLAG improves offender
detection accuracy by 3.3–14.3% over individual bla-
cklists.

3. It evaluates each region of Internet address space for
dynamic addressing or mismanagement. If either is
found, BLAG may replace the addresses from the re-
gion with /24 prefixes, if anticipated loss of specifi-
city is acceptable. This selective expansion further im-
proves recall, by 411% with a maximum of 14% loss
in specificity.

BLAG outperforms naive aggregation of all monitored bla-
cklists, and achieves higher specificity while increasing re-
call by 226%. BLAG also outperforms PRESTA [83], a re-
cently proposed blacklist aggregation approach by achieving
107–402% higher specificity than PRESTA.

2. DATASETS, METRICS AND USE CASES
To illustrate the problems experienced by the current bla-

cklists, we have analyzed 157 publicly available blacklists,
collected regularly over a one-year period. We have further
collected several ground-truth datasets containing known-
legitimate and known-malicious traffic sources. We use these
datasets to evaluate performance of current blacklists and
to evaluate BLAG. We describe our datasets and metrics in
this section, and discuss performance goals and blacklist use
cases.

2.1 Datasets

Black. This dataset provides input into BLAG and com-
peting approaches. We have collected 157 publicly avail-
able blacklists continuously for 13 months starting from Jan-
uary 2016 to February 2017. Each blacklist may be up-
dated at a different frequency by its provider, ranging from
15 minutes to 7 days. The distribution of update times for
our dataset is show in Figure 1(b). Our collection algo-
rithm detects the update frequency for each blacklist and re-
freshes its snapshot regularly. We have collected around 176
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Figure 1: Blacklist size and update times.

million blacklisted addresses over 23,483 autonomous sys-
tems. Our blacklist dataset is representative of different at-
tack vectors such as spam, malware, DDoS attacks, ransome-
ware, etc. Table 1 shows the blacklists maintainers roughly
classified into four categories based on the attack type they
monitor and the number of blacklists maintained by them.
Our dataset includes popular blacklists such as DShield [59],
Nixspam [66], Spamhaus [44], Alienvault [1], Project Hon-
eypot [38], Abuse.ch [48], Emerging Threats [18] and malc0de [30].
Figure 1(a) shows the blacklist size distribution in the dataset.
On one hand, we have large blacklists (15.76%) listing more
than 500,000 addresses and on the other, we have small bla-
cklists (19.56%) which list less than 1,000 addresses.

Ground truth: Mailxam (Mailinator+Alexa+Ham). This
dataset contains one source of malicious addresses and two
sources of legitimate addresses, collected over the same month
of June, 2016. Simultaneous collection is important, because
an address may be malicious at one time, and cleaned after-
wards. Our malicious source comes from Mailinator [29],
a service, which allows users to redirect unwanted e-mails
to a public inbox. We filter e-mails from these public in-
boxes during June 2016, using Spam Asssassin [65] to obtain
around 2.3 M spam e-mails, sent by around 393 K addresses.
These addresses form our malicious dataset. Our first source
of legitimate addresses are Alexa’s [26] top 500 K websites
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Type # Blacklist Maintainers
Malware 51 Emerging threats [19], Malware Bytes [21], Clean MX [11], Jigsaw security [25], CyberCrime [15],

Swiss security blog [48], Bambenek [5], NoThink [35], I-Blocklist [22], NoVirusThanks [36], DYN [23],
Malc0de [30], Malware domain list [31], Cyber Threat Alliance [14], Botscout [51], ASProx Tracker [2]

Reputation 49 Emerging threats [19], Graphiclineweb [24], Alienvault [1], Binary Defense Systems [6],
CINSscore [9], Swiss Security Blog [48], Blocklist.de [7], I-Blocklist [22], Cisco Talos [10],

Bad IPs [4], Blocklist Project [52]
Spam 48 Spamhaus drop and edrop [44], Stop Forum Spam [47], Chaosreigns [3], Lashback [28],

Nixspam [66], Project Honeypot [38], Sblam! [41], Turris [20],
Malware bytes [21], Cleantalk [12], My IP [33], Pushing inertia [39], BadIPs [4]

Attacks 36 I-Blocklist [22], Malware Bytes [21], Snort Labs [43], Jigsaw Security [25], TrustedSec [49],
Haley [8], Darklist [17], SIP blacklist [46], VoIPBL [50], DShield [59], NoThink [35],

OpenBL [37], Cruzit [42], BruteforceBlocker [16], Clean MX [11], Bad IPs [4], MaxMind [40]

Table 1: Four types of blacklists, roughly categorized by the type of malicious activities they capture. Each row gives the
number of blacklists and blacklist maintainers for that type.

Dataset Start time Type Sources
Mailxam 06/01/2016 Malicious Mailinator (393 K)
30 days Legitimate Alexa (284 K)

Legitimate Ham (45 K)
Miraixa 09/01/2016 Malicious Mirai (232 K)
31 days Legitimate Alexa (330K)

Darkexa 02/01/2017 Malicious Darknet (3.9 M)
16 days Legitimate Alexa (281K)

Table 2: Ground-truth datasets used in this study, collected
in 2016/2017.

mined in June 2016. Out of this set we remove websites that
may host malware, using Google Safe Browsing API [60]
for detection. Afterwards, we convert the domain names
into addresses using DNS, which leaves around 284 K ad-
dresses. Our second source of legitimate addresses, Ham,
comes from our human user study. This study was reviewed
and approved by our IRB. We recruited 37 volunteers, who
allowed us automated access to their GMail inbox, during
June 2016. We scanned each participant’s GMail account us-
ing a plugin, which we developed. Our plugin used OAuth2
protocol to access GMail without requiring the participant’s
GMail credentials, and it used regular expressions to extract
a sender’s address, time and label for each e-mail. The label
in GMail can be assigned by a user or by GMail and it is
usually “spam”, “inbox” or a user-defined label like “confer-
ence”. We harvested information only from e-mails that have
labels other than “spam”. Our scanning generates as output
a list of {sender IP address, time} tuples, which we save. We
collected no identifying information about our study partic-
ipants, thus this collection posed no privacy risk. We ex-
tracted around 178 K e-mail records, sent by around 45 K
addresses.

Ground truth: Miraixa (Mirai+Alexa). This dataset con-
tains one source of malicious and one of legitimate addresses,
both collected during September 2016. Our malicious source

comes from Netlab’s [34] scans of Mirai-infected hosts dur-
ing September 2016. There were around 232 K infected
hosts. Our legitimate source comes from Alexa’s top 500
K websites, mined in September 2016, and filtered as de-
scribed for the previous dataset. We collected around 330 K
legitimate addresses.

Ground truth: Darkexa (Darknet+Alexa). This dataset
contains one source of malicious and one of legitimate ad-
dresses, both collected in February 2017. The malicious
source comes from sources of TCP scans (SYN packets)
sent to CAIDA’s /8 Darknet [57] in February 2017. These
sources may be spoofed, but we have no way to identify and
remove spoofed scans. We collected around 3.9 M malicious
addresses. Our legitimate source comes from Alexa’s top
500 K websites, mined in February 2017 and filtered as de-
scribed for previous datasets. We collected around 281 K
legitimate addresses.

Our three datasets contain sources of diverse attacks: spam,
DDoS or vulnerability scans. This allows us to test how well
BLAG could prevent these attacks if used to filter traffic to a
deploying network.

Limitations. Our datasets suffer from several limitations.
The Black dataset contains only the publicly available bla-
cklists, while many providers also offer for-pay blacklists
that may be larger and more accurate. We chose to use only
the public blacklists because: (1) these blacklists are widely
used and we wanted to evaluate BLAG’s benefits for an av-
erage user, (2) we wanted our work to be repeatable, and
using public blacklists enables us to freely share our data.
We plan to share all the datasets from this section and our
BLAG blacklist by the final version deadline. We believe
that BLAG’s benefits would carry over to for-pay datasets,
because its mechanism is generic.

Another limitation is that legitimate and malicious data-
sets are small and imperfect. They only capture a sample
of legitimate/malicious addresses that were active in the In-
ternet at a given point in time and for a given legitimate or
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Figure 2: Blacklist specificity is usually high but recall is
low. Naive aggregation (denoted by NA) has higher recall,
but with lower specificity.

malicious purpose. We also rely on other security technolo-
gies, such as Google safe browsing or SpamAssasin to la-
bel an address as legitimate or malicious at a given point
in time. These limitations are present in other published
works [58, 62, 70, 77, 83, 86], which use similarly-sized ma-
licious and legitimate datasets, and rely on secondary tech-
nology, as do we, to establish maliciousness at a given time.
These limitations cannot be avoided, as there is no complete,
100% accurate list of legitimate and malicious addresses in
the Internet nor in any specific network, at any given point in
time.

Our datasets contain addresses of different types. For ex-
ample, in Miraixa, malicious addresses belong to IoT de-
vices, while legitimate addresses belong to Web servers. This
is not a limitation. Internet traffic contains a variety of hosts,
which engage in a variety of behaviors. Our datasets contain
a small subset of these hosts and behaviors, where we could
establish legitimacy or maliciousness, with some degree of
confidence. They are not perfect, but we hope they are suf-
ficient to provide a common ground truth to evaluate BLAG
and competing approaches.

2.2 Metrics
We measure performance of blacklists using recall and

specificity. Recall measures the percentage of offenders (out
of some ground-truth set) that were blacklisted. Specificity
measures the percentage of legitimate hosts (out of some
ground-truth set) that were not blacklisted.

2.3 Use Cases and Performance Goals

Performance goals for any given blacklist depend on when
and how it is used. If a blacklist is used preventively, as a
first-layer defense, and is on all the time, it is very impor-
tant that the blacklist has high specificity. This is to ensure
that no legitimate traffic is regularly dropped. Current bla-
cklists have high specificity (near 100%) but extremely low
recall. If a blacklist is used reactively, to prioritize traffic
drops during a high volume attack, such as DDoS or a worm
infection, it is very important to maximize recall, and achieve
some reasonably high specificity. Our work targets this sec-
ond use case. We will show in Section 5 that BLAG achieves
more than 86% specificity, while significantly increasing re-
call, compared to individual blacklists.

3. PROBLEMS WITH CURRENT BLACKLI-
STS

In this section we illustrate the problems that blacklists
have and that we aim to handle. To estimate specificity and
recall for individual blacklists, we calculate the daily overlap
between addresses reported in the malicious and legitimate
sources for Mailxam, Miraixa and Darkexa datasets and the
addresses reported by the individual blacklists. We then re-
port the total percentage of legitimate (specificity) and ma-
licious (recall) addresses listed over the course of the entire
ground-truth dataset.

We first show that all blacklists have generally high spe-
cificity but poor recall. This motivates the need for their
aggregation. We further show that naive aggregation fails.
It increases recall but severely lowers specificity. We show
that this occurs because each blacklist’s specificity varies a
lot spatially, i.e., over regions of IPv4 address space. This
motivates us to identify and aggregate only those portions of
blacklists that have high specificity. [Sivaram: Finally, we
show the reactive nature of blacklists – that is blacklists list
attackers only after a attack has been listed. To further im-
prove attack detection, we see that expanding addresses into
its corresponding prefix can potentially increase the number
of attackers detected. This is warranted by the study that
mismanaged networks are prone to host more attackers than
well managed networks. However, we also find that expand-
ing all addresses into prefixes further reduces the specificity.]

3.1 Missed Attacks
Individual blacklists have low recall as shown in Figure

2(b), for our three datasets. The best recall a blacklist from
our Black dataset had was 13.5% on Mailxam, 5.6% on Mi-
raixa and 8.4% on Darkexa. About x,y,z% of blacklists do
not even report a single attacker. Previous blacklist studies
have similarly observed high specificity and low recall [76][Sivaram:
cite paint it black]. A key reason for low recall is that bla-
cklists monitor only on specific type of attack. However,
compromised machines are constantly drafted into botnets
for initiating various types of attacks. A compromised ma-
chine used for generating spam emails one day, can be used
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for generating DDoS attack a few months later.
To improve attack detection, we could combine blackli-

sts of different attack types to detect more attackers. Also,
blacklists are rich in historical data which could be further
used to improve recall by listing potential re-offenders. One
approach is to include every address ever seen on any black-
list into a historical blacklist. We show how this approach
of combining all blacklists of different attack type includ-
ing historical data would perform on our ground-truth data-
sets with regard to specificity (Figure 2(a)) with a horizontal
bar. Historical blacklists has higher recall than any moni-
tored blacklist. About 18.7%, 13.3% and 20.5% of malicious
addresses from Mailxam, Miraixa and Darkexa datasets are
detected for naive aggregation, clearly indicating that bla-
cklists of different attack type over time is useful in uncov-
ering more attackers.

Implications: Blacklists generally have low recall. There-
fore, we aggregating blacklists of different attack type over
time can increase recall.

3.2 Varying Specificity
Specificity is generally high (> 94.2%) for individual bla-

cklists, which means that no individual blacklist will erro-
neously list many legitimate sources. We see that 94% of
blacklists have 100% specificity and the poorest performing
blacklist has a specificity of 93%. [Sivaram: Also write for
other data.]

To improve recall, we suggested to aggregation of all bla-
cklists over time. However, this can decrease specificity.
Figure shows the drop in specificity of the combined blackli-
sts of different attack type. The specificity drops by x,y,z%
for the three dataset. This can occur due to two reasons.
First, Blacklist maintainer uses their own proprietary algo-
rithm to include or exclude an address from a blacklist. This
can have certain amount of false positives. Second, although
historical blacklist data has shown to improve recall, there
are many addresses which are no longer malicious. There-
fore, historical blacklists, can further amplify the number of
false positives in the combined blacklists. The challenge we
address in this paper is how to design a smarter aggregation
approach, which achieves better recall with minimal loss in
specificity.

Implications: Blacklist accuracy varies due to maintain-
ers propriety algorithms and historical data can contain
many addresses which are no longer malicious. Therefore,
we aim to devise an approach that can identify areas where
a blacklist are very accurate and include listings only from
those areas in aggregation.

3.3 Address volatility
Blacklists list IP addresses. But in networks that use dy-

namic addressing, an offender’s address can change over time.
There are many dynamically-addressed networks today which
may affect the performance of blacklists. Thomas et al. [80]
observed that devices using Google services are assigned an
average of 20 addresses over two weeks. Dynamic nature

of addresses was also observed in [56, 64, 67, 73], which es-
timate dynamic addressing to be prevalent in 8–20% of the
Internet.

Another problem with listing addresses is that blacklists
can only be reactive, that is, they catch only previously known
offenders. Zhang et al. [87] showed the correlation between
network mismanagement and maliciousness – malicious en-
tities are often concentrated in few mismanaged networks.
If we could identify such mismanaged networks, blacklists
could become proactive in that space, by listing the entire
network as soon as a few offenders are detected. We observe
a pattern of frequent reoffense from several networks in our
Black dataset, which is aligned with findings of Zhang et al.
About 99.6% of blacklisted addresses reside in the same /16
prefix, and 82.3% of blacklisted addresses reside in the same
/24 prefix, as another blacklisted address.

We could potentially expand addresses into prefixes. In
Figure we see that by expanding any listed address across
historical blacklist data, we see that the recall increases by.
However expanding every address into prefix can amplify the
number of legitimate addresses even further. Figure shows
the specificity after expanding every address into prefix.

Implications: Detecting potential dynamic addressing and
mismanagement in networks can provide indications where
coarser blacklisting can lead to improved recall. However,
such addresses such be selectively expanded to maintain
high specificity.

4. BLAG DESIGN
[Jelena: speak somewhere that you use /16 in recommen-

dation system] In this section we present the design of our
system – BLAG, which selects accurate information from
blacklists and aggregates it. We illustrate the system in Fig-
ure 3. We assume some given network wants to deploy BLAG
for blacklist aggregation. BLAG starts with a set of recently
obtained blacklists (B), and prior blacklist observations (P).
Also, BLAG uses some set of known-legitimate senders (L)
that generated recent traffic to the deploying network. This
set is necessary to estimate specificity of various blacklists
from B, and select which portions to aggregate. A univer-
sity network could form this set, for example, by choosing
sender addresses from non-spam messages, addresses from
other colleges and universities, addresses of popular Web
and DNS servers, etc. BLAG selects some addresses from
(B) and (P) to be included in its aggregate master blacklist.
Periodically, BLAG updates (P) with information from (B),
refreshes (B) with updated listings, refreshes (L) with cur-
rent known-legitimate senders and recalculates aggregated
master blacklist. This process repeats indefinitely.

Our goals for BLAG include:

1. Evaluate the quality of each blacklist’s information for
a given address space. We achieve this by calculating
a reputation score for each address and each blacklist,
and for each /16 network listed by that blacklist. This
score is a function of the blacklist’s accuracy in report-
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Figure 3: BLAG implementation consists of assigning reputation scores to addresses from different blacklists. Then, recom-
mender system generates scores for addresses, which do not have a score in a given blacklist (shaded blocks). Addresses that
have at least one score greater than the α threshold (red numbers) are used for aggregation. These addresses will be put on
the master blacklist. Finally, we selectively expand addresses from dynamic or mismanaged networks into /24 prefixes, if we
project that this expansion will not severely lower specificity.

ing prior offenses from the same address space region,
i.e., it is an estimate of the expected gain in recall and
specificity, if this portion of the blacklist were included
in aggregation. Similar to prior work in PRESTA [83],
we also take into account the listing’s age, and favor
inclusion of offenders that were recently listed. Thus,
the reputation score is also the function of the address’s
history of offense. We describe score calculation in
Section 4.1.

2. Aggregate high-quality pieces of information into the
master blacklist. We use recommender systems to cal-
culate missing reputation scores, i.e., to predict the like-
lihood of re-offense of an address within or across bla-
cklists. We then use a threshold-based approach on
these reputation scores to filter out unreliable informa-
tion. This process is explained in Section 4.2.

3. Expand some addresses into prefixes on the master black-
list to increase recall. We expand those addresses that
we believe are dynamically allocated, or addresses that
belong to mismanaged prefixes. Our expansion method
is also selective – it tries to balance the gain in recall
against the loss in specificity, and is explained in Sec-
tion 4.3.

4.1 Reputation Scores: Evaluating Quality
BLAG starts its aggregation by first generating a reputa-

tion score for each address a and blacklist b. Our reputation
score for this listing is a sum of two scores: the historical
offense score hoa,b and the safety score sa,b.

ra,b =
hoa,b + sa,b

2
(1)

The score ranges from 0 to 1. During the aggregation phase,
we multiply the scores by 10, to speed up the convergence
of the recommendation system. A higher reputation score
indicates that the listed address has a higher probability of

re-offense, and the blacklist listing the address has high spe-
cificity in the given address region.

Address’s history of offense hoa,b:
Historical blacklist data can be a valuable source to detect

potential re-offenders, and previous studies have shown re-
cent offenders are more likely to re-offend [83]. We define
historical offense score hoa,b as:

hoa,b =
1

2
t−tout

l

(2)

where l is a constant, which we set empirically (discussed
in Section 6.3), tout is the de-listing (removal) time of a at
blacklist b and t is the time when the score is calculated.
The exponential factor ensures that the score decays expo-
nentially over time, giving higher weight to recent offenders.
If the address a is currently listed in b, we set its historical
offense score to 1.

Blacklist’s safety sa,b: In Section 3.2, we illustrated how
specificity of a given blacklist varies over the Internet’s ad-
dress space. We capture this dependency in the safety score,
with higher values denoting higher estimate of specificity.
Let net(a) be a /24 prefix containing address a and onet(a)
be the set of all addresses from net(a) that were ever re-
ported in blacklist b. Let e be the set of all listed addresses
that are also in (L). We define safety of blacklist b for address
a as:

sa,b = 1−
|e ∩ onet(a)|
|onet(a)|

= 1− Fa

|onet(a)|
(3)

i.e., the safety of a blacklist is the fraction of the addresses it
reports within net(a) that are not misclassifications and Fa

represents the number of misclassified addresses in net(a).

4.2 Recommender System: Calculating Miss-
ing Scores

After all the reputation scores are calculated, BLAG places
them into a score matrix where blacklists are at the columns
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Figure 4: Latent factorization of the score matrix R, a M ×N matrix, where M is the number of addresses and N is the number
of blacklists. The cells indicate reputation scores. Addresses not listed in a given blacklist are assigned a zero score. Score
matrix is factorized into two matrices of M ×K and K ×N , and the cross product results in a new matrix R′, which updates
the zero score cells with a positive value.

and listed addresses at the rows as shown in Figure 4. BLAG
creates a score matrix for every /16 prefix in the Black dataset.
Each cell in the score matrix holds the reputation score ra,b
for the given row (address a) and given column (blacklist b).
This matrix is very sparse. We fill the empty cells by us-
ing a recommendation system. This helps us, in some cases,
to elevate low-score addresses on some blacklists, into high-
score addresses on other, more reputable blacklists. Such
addresses then propagate to the aggregated master blacklist,
and help us improve recall without a great loss in specificity.

Recommendation systems are usually used to predict fu-
ture product ratings by some users, given a set of past ratings
of same or related products, by target users and other similar
users. A well-known example is the Netflix recommenda-
tion system [61], which may recommend a new movie M to
user U by relying on the U’s past ratings of movies similar
to M, and on ratings that users similar to U have given to
M or movies similar to M. In our context, addresses are the
products that are being evaluated, and blacklists are users as-
signing the rating. We view the reputation score as the rating.

Two most commonly used recommendation systems are
a content-based recommendation system [69] and collabo-
rative filtering [74]. A content-based recommendation sys-
tem requires explicit definition of features describing the re-
lationship between blacklists and addresses. Such features
are hard to obtain, because each blacklist uses proprietary
algorithms and private observations to decide when to list an
address. We instead use collaborative filtering, as it infers
information about the relationship between a blacklist and
an address using only the existing reputation scores.

Figure 4 illustrates the recommendation system’s opera-
tion. Let M and N represent the set of addresses and bla-
cklists, respectively. Let R be a score matrix of size |MxN |
which consists of reputation scores quantifying the malicious-
ness of an address being listed by a given blacklist. For ex-
ample in Figure 4 score matrix R consists of four blacklists
(M = 4), and five addresses (N = 5). Every address need

not be present in every blacklist, which makes score matrix
R sparse. Address 128.0.0.1 listed in nixspam blacklist has
a reputation score of 5 (on the scale from 0 to 10). Address
128.0.0.4 has a score of zero in openbl blacklist, where it
has never been listed. There are latent (unknown) features of
blacklists and addresses that lead to an address being listed.
Let the number of latent features that influence reputation
scores of addresses in blacklists be K (see Section 6.4 for
how we choose the value of K). Our goal is to estimate the
unknown scores in the sparse score matrix R by estimating
two matrices P (|MxK|) and Q(|NxK|), which are factors
of score matrix R, such that their cross product is approxi-
mately equal to known values in R. In other words, matrix
factorization is used on R to obtain factor matrices P and Q
such that:

R ≈ P ×QT = R′ (4)

We obtain the values of latent matrices P and Q using gradi-
ent descent [63], which randomly assigns values to P and Q
and estimates how different the product of P and Q is from
the original score matrix R. We use root mean squared error
(RMSE) to estimate the difference. Gradient descent tries to
minimize RMSE iteratively. We discuss in Section 6.4 the
number of iterations required to have a small RMSE.

After obtaining matrices P and Q, each row in P repre-
sents the association strength between addresses and latent
features K, and each row in Q represents the association
strength between blacklists and latent features K. To obtain
an unknown reputation score for an address a and blacklist
b, the dot product of two latent vectors corresponding to ad-
dress a and blacklist b is calculated as follows:

ra,b = pTa qb (5)

Where pa defines the association strength of address a with
features K and qb defines the association strength of black-
list b with features K. Consider addresses 128.0.0.3 and
128.0.0.4 in Figure 4, which are not listed in the openbl
blacklist. Both of these addresses have similar reputation
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scores in other blacklists (with nixspam’s scores of 5 and 5,
and spamhaus edrop’s scores of 5 and 7). Intuitively, if these
addresses where to be listed in the openbl blacklist, we can
expect them to have similar scores. Recommendation system
captures this pattern. Also openbl tends to have a little higher
scores for the addresses it lists, compared to other blackli-
sts. This regularity is also captured by the recommendation
system. The system generates the R′ score matrix, where
scores of 8.5 and 9.6 are assigned to addresses 128.0.0.3 and
128.0.0.4 respectively, for the openbl blacklist.

After we have calculated all the missing scores, and filled
in the empty cells in score matrix R, we proceed to con-
struct the aggregated master blacklist. To generate the mas-
ter blacklist, we observe all blacklists B = {b1, b2, ..., bn}
and then use a threshold α (choice of α values is discussed
in Section 6.5) to include all the addresses a for which the
following holds : ∃b ∈ B|ra,b ≥ α.

4.3 Selective Expansion: From Addresses to
Prefixes

We have discussed in Section 3.3 why it would be use-
ful to identify and expand addresses in dynamic and mis-
managed networks into address prefixes. Prior work has ex-
panded addresses into prefixes indiscriminately [58, 77, 82]
– this improves recall but greatly decreases specificity, as we
show in Section 6.1. The novelty of our approach is in first
identifying dynamic and mismanaged networks and then ex-
panding addresses belonging to these networks into prefixes,
only when this expansion is likely to bring us higher gain in
recall than loss in specificity.

The expansion phase starts with master blacklist produced
in the previous step, and calculates which addresses could be
expanded into their /24 prefixes (see Section 6 for rationale
behind choosing /24 prefix size). We first generate a list of
all /24 prefixes that contain addresses on the master black-
list. We then evaluate if each prefix is either dynamically
addressed or mismanaged. On a positive finding, we esti-
mate the recall gain and specificity loss, using our historical
offense and safety scores as proxies, respectively. If the es-
timated gain exceeds the loss, we will include the /24 prefix
on the master blacklist.

4.3.1 Mismanaged Prefixes
We classify a /24 prefix as potentially mismanaged if it

contains more than the threshold Nm addresses, reported by
any blacklist. We set Nm = 2 (see Section ?? for rationale).

Table 3 shows the number of addresses, which are ei-
ther dynamically addressed or mismanaged or both. About
22.4% of networks are only dynamic networks, 10.6% are
both dynamic and mismanaged, 42.4% are only static net-
works and 24.6% are static and mismanaged. Overall, 57.6%
of addresses on our master blacklist are candidates for ex-
pansion into prefixes.

4.3.2 Selective Expansion
If a /24 prefix is found to be either a dynamic or misman-

Type # of Networks % of Networks
Only dynamic 312,169 22.4%
Dynamic and mismanaged 148,584 10.6%
Only static 592,829 42.4%
Static and mismanaged 343,370 24.6%
Total 1,396,952 100%

Table 3: Breakdown of probed networks into static, dynamic
or mismanaged.

(a) Case 1 (b) Case 2

Figure 5: Different use cases, illustrating how and why
BLAG works.

aged, we selectively expand such addresses into their corre-
sponding /24 prefixes. We estimate the cost of expansion for
the /24 prefix a, denoted by SEa, as:

SEa = 1− Fa

Pa + Fa
(6)

where Pa is the number of addresses from address space a,
which are predicted to be malicious (i.e., which are included
in the BLAG’s master blacklist) and Fa is the number of
legitimate addresses, which have been historically misclas-
sified as malicious, from Equation 3.

We define a threshold β such that, addresses a which are
either dynamic or mismanaged are expanded if SEa ≥ β.
We discuss the choice of β in Section ??.

4.4 Why and How BLAG Works
BLAG assigns reputation scores to addresses listed in bla-

cklists. An address can have a low reputation score when
the blacklist listing the address is not safe enough for that
address space (sa,b is low) or when the address may not
have been recently listed in the blacklist (hoa,b is low) or
when both sa,b and hoa,b are low. In such cases, these ad-
dresses will have a smaller chance to propagate to the ag-
gregated master blacklist. This may be the right decision in
some cases, while in others sparsity of the reputation matrix
may impair timely inclusion of repeat offenders on the mas-
ter blacklist. Recommendation system helps overcome the
sparsity problem. We now illustrate with a few toy examples
how BLAG works, and how it can achieve smart aggrega-
tion. Figure 5 illustrates these cases. For simplicity, imagine
that there are only two blacklists reporting address sets A and
B in some address region X. Case 1: Aggregating disjoint
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Figure 6: Determining when an address (offender or legiti-
mate) is identified correctly or incorrectly by a blacklist.

listings. Our reputation scores help identify accurate (timely
and safe) listings in A and B. When A and B are disjoint, the
recommender system cannot help fill in empty cells. Only
addresses that already have a high score in A and B will be
included in the master blacklist.

Case 2: Aggregating partially disjoint listings. Our
reputation scores help identify accurate listings in A and B.
When A and B have some overlap, the recommender system
helps fill in empty cells (i.e., those in A but not in B and those
in B but not in A). Addresses that already had a high score
in A or B will be included in the master blacklist – the rec-
ommender system does not influence their inclusion. Other
addresses that received a high score by the recommender sys-
tem (in empty cells of score matrix) but originally had a low
score in A or B benefit from the recommender system. They
will be included in the aggregated master blacklist, whereas
they would have been left out otherwise. In a sparse matrix,
many addresses may be influenced this way, and promoted
for inclusion. Finally, addresses that received a low score by
the recommender system, and that originally had a low score,
will be excluded. Recommender system does not influence
their exclusion.

As BLAG assimilates more blacklists, the probability of
an address matching the case 2 instead of case 1 grows, and
we reap benefits from the recommender systems. We evalu-
ate this effect in Section 5. Unfortunately, an attacker could
misuse the recommender system to pollute our master black-
list. We discuss this effect and possible solutions in Section
8.

5. EVALUATION
In this Section we evaluate the performance of BLAG and

several competing approaches, using datasets described in
Section 2. We find that BLAG achieves reasonably high spe-
cificity (95–97%) and high recall (11–65%), while other ap-
proaches have either very low recall (<1%), or higher recall
but low specificity (≈84%).

5.1 Evaluation setup

Competing approaches: We compare BLAG’s performance
against four approaches:

1. Best – the blacklist from Black dataset that performs
the best on a given ground-truth dataset with regard to
recall; we start with the most recent snapshot of that
blacklist prior to the start of the ground-truth dataset

and then refresh it with snapshots taken during the ground-
truth dataset. Best is a hypothetical scenario, because
in real deployment we could not tell which blacklist
will eventually be the best. It allows us to measure
benefits of aggregation over use of a single blacklist.

2. Historical – all addresses listed in any blacklist in the
Black dataset, up until the end of a given ground-truth
dataset. This approach assumes “once malicious, al-
ways malicious”.

3. PRESTA – the blacklist generated using technique de-
scribed in [83]. PRESTA performs spatio-temporal anal-
ysis and expansion using historical blacklist data to
generate a more proactive blacklist. It expands some
addresses, which are repeat or recent offenders, into
their /24 prefix, and two surrounding /24 prefixes. For
example, if the address 1.2.3.4 were chosen for ex-
pansion, PRESTA would include 1.2.2.0/24, 1.2.3.0/24
and 1.2.4.0/24 in its blacklist. [Sivaram: NDSS review-
ers had issue with this approach and said that it wasnt
a fair evaluation. Can we just use PRESTA’s expansion
technique for comparison?]

Figure 6 illustrates our evaluation methodology. We first
take each of our three ground-truth datasets and divide it
into seven days of training and the rest is used for testing
for email and scanning dataset. For DNS dataset, we use one
day of training and one day for testing. We use the legitimate
part of the training dataset as our (L) set. During evaluation,
for our testing set and for each blacklisting approach (best,
historical or BLAG) we simulate the dynamics with which
the addresses appear over time, both in individual blackli-
sts (Black) and in ground-truth datasets. When an address
appears in the Black dataset we:

• include the address in the best blacklist if it appeared
on a blacklist, which will ultimately perform the best
on the given malicious dataset,

• include the address in the historical blacklist,

• apply PRESTA algorithm on the address to determine
if it is included in the PRESTA blacklist,

• apply BLAG on the address to determine if it should
be included in the BLAG’s aggregated master blacklist,
and if it should be expanded into its /24 prefix.

Evaluation metrics: In our evaluation we measure recall
and specificity for each approach as follows. (1) Specificity:
When a legitimate address l appears in our testing dataset,
we compare its address against the currently generated black-
list (competing approach or BLAG) at the same point in time
in our simulation. If listed on that blacklist, we count l as a
false positive. Specificity is the percentage of legitimate ad-
dresses that were not false positives. (2) Recall: When an
offender o commits offense in our testing dataset, we com-
pare the offender’s address against the currently generated
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Parameter Description Value
l Length of address history 30 days
K Number of latent features 5
α Reputation threshold 8

Table 4: Parameters used in evaluation.

blacklist (competing approach or BLAG) at the same point
in time in our simulation. We mark o as true positive if it is
currently listed by the blacklist. Recall is the percentage of
offenders that are true positives.

Parameter settings: Parameters used in our evaluation
are summarized Table 4. We set length of address history
l = 30, number of latent features for recommendation sys-
tem K = 5 and reputation threshold α = 8. Our choices for
these variables are explained in Section 6.

5.2 BLAG is More Accurate
The goal of reactive blacklisting is to capture as many of-

fenders as possible, while keeping the specificity high. [Sivaram:
Do you think the representation of the figs is better? The ear-
lier format did not show much difference in specificity, as the
values of specificities were usually high and recall low.]

BLAG has the best specificity and recall across three traf-
fic datasets: Figure 7 shows that BLAG has overall the
best performance. Best blacklist has the highest specificity
(99.9–100%) but the lowest recall (0.02–0.1%), indicating
that a single blacklist is lot enough to capture all attackers.
Historical blacklist, which is naive aggregation of all black-
list data has better recall (0.7–18.3%) but has lower specifi-
city (88.8–93.7%) than best blacklist. BLAG’s specificity is
uniformly high (94.9–97.4%) and its recall (11.6–65.6%) is
higher than that of best and historical blacklists.

BLAG’s performance comes both from selection of high-
quality data for aggregation and from expansion of ad-
dresses into prefixes. We investigated how much of BLAG’s
performance comes from its selection of high-quality data to
aggregate and how much comes from expansion, by show-
ing BLAG with and without expansion (BLAG and BLAG
No Exp in Figure 7). We compare this performance to per-
formance of best blacklist, and to historical which perform
naive aggregation without expansion.

Even without expansion, BLAG achieves recall(0.7–17.8%),
which is always better than best, with a small loss of speci-
ficity (1–2.4%). Historical blacklists have slightly better re-
call (0.6–5.2%) than BLAG without expansion, but lose up
to 6.2–11.1% of specificity. Thus, smart aggregation helps
BLAG improve recall and specificity over naive and no ag-
gregation approaches. Expansion of BLAG then improves
recall further, at a small loss of specificity (up to 5% loss on
our traffic datasets). We show in Section 6 that, even if we
applied selective expansion on other blacklisting approaches,
BLAG would still outperform them.

BLAG filters more attacks. Some addresses may generate

more attacks than others, i.e., they could be more malicious.
We evaluate the amount of malicious activity (e.g., spam,
scanning, etc) that would be filtered by BLAG, best and his-
torical blacklists for our three traffic datasets. In case of
email dataset, BLAG would filter 65.6% of spam, compared
to 0.19% and 18.3% filtered by best and historical blacklists
respectively. In case of scanning dataset, BLAG would fil-
ter traffic from 56.3% of infected devices, compared to only
0.07% and 9.4% filtered by best and historical blacklists. In
case of DNS dataset, BLAG would drop 11.6% of attackers,
compared to 0.0002% and 0.7% filtered by best and histori-
cal blacklists respectively.

6. SENSITIVITY ANALYSIS
In this section we discuss our design choices and values

we adopt for constants l, K and α.

6.1 Expansion Approach
BLAG expands select addresses into /24 prefixes. In this

subsection we investigate two questions. First, we ask what
if a similar expansion approach to BLAG’s were applied
to best blacklist and historical blacklist. Instead of selec-
tive expansion here, which uses BLAG’s information, we
use regular expansion, where each candidate address is ex-
panded into its /24 prefix only when there are no other ad-
dresses present in the training dataset. We show that BLAG
still outperforms competing approaches, due to its selection
of only high-quality information to aggregate, prior to ex-
pansion. Finally, we investigate how BLAG’s performance
would change if we expanded addresses into their full BGP
prefixes or entire autonomous systems.

BLAG outperforms best-expanded and Historical-expanded
blacklists. We compare BLAG to best and historical bla-
cklists, with regular expansion and show their performance
in Figure 8. Historical expanded blacklists have 0.5%–13.6%
better recall than BLAG for all the three datasets, but at the
loss of up to 15.8% of specificity. BLAG has higher recall
(11.6–65.6%) than the best-expanded blacklists, which has
only 0.1–9.1% recall. BLAG achieves this at modest spe-
cificity cost. BLAG loses up to 2.5–5% of specificity, while
best-expanded loses 0.1% and historical-expanded loses 9.8–
15.8%. Thus BLAG strikes the right balance between main-
taining high specificity and improving recall.

BLAG’s expansion approach outperforms expansion at
BGP prefix and AS level. Previous work suggested ag-
gregating addresses into BGP prefixes [77]. We apply /24
prefix, BGP prefix and AS level aggregation to the master
blacklist, produced by BLAG for the the three datasets. We
apply the selective expansion technique, but instead of ex-
panding to /24 prefix, we expand to BGP prefix and AS.
We show their recall and specificity in Figure 9. [Sivaram:
By using the selective expansion technique we do get better
results in capturing attackers. However, I still believe that
blocking entire BGP prefix/ASN can be controversial and
can raise concerns among reviewers. Do you think, I should
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Figure 7: Specificity and recall of BLAG with two competing approaches on traffic datasets.
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Figure 8: Specificity and recall of BLAG and four competing approaches with expansion.
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Figure 9: Evaluating BGP and AS expansion techniques.
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Figure 10: Evaluating α

just expand blindly into BGP prefix/ASN without the selec-
tive expansion?]

6.2 Contribution of Individual Blacklists by Size
We ran BLAG on n largest blacklists, and varied n from 1

to 157 . We report the specificity and recall of these tests on
email dataset in Figure 11. We observe that the recall increa-
ses as we add more blacklists but it has diminishing returns.
There is 15.6% gain in recall for the first 106 blacklists. Af-
ter which, there is a sharp increase in recall for the remaining
blacklists. The top 10 largest blacklists have recall of 13.2%,
top 40 have have a recall of 40.1%, top 80 have a recall of
62% and all blacklists have a recall of 65.6%. As we add
more blacklists, specificity drops slightly from 100% with
first 100 blacklist, to 98% when top 100 blacklists are used,
drops further to 97.1% for the next 30 blacklists and finally
to 95.3% when all blacklists are used. This illustrates that
having a moderate number (several tens) of blacklists would
likely suffice to reap benefits of running BLAG.

6.3 Parameter l for Historical Decay
[Sivaram: I am thinking of showing for ten different val-

ues of l from 10 to 110 days for the three datasets. What do
you think?]

6.4 Parameter K for Matrix Factorization
[Sivaram: I think I am hand waving here. Though it K is

relevant in matrix factorisation, I make sure that the RMSE
drops below 1% for the iterations to stop. What do you think
would be a good evaluation for this? Do you think we need
one?] A critical parameter in non-negative matrix factor-
ization (NMF) used in BLAG is the parameter K, which
is the number of latent features. An ideal K will have the
minimum error between the matrix R(MxN) and the cross
product of P and Q (see Section 4.2). Brunet et al. [54] sug-
gested in using the smallest K, after which the cophenetic
correlation coefficient starts decreasing. We evaluate differ-
ent values of K by considering the most dense /16 prefix,
consisting of 56,102 addresses, which are present in over 67
blacklists. We vary K from 2 to 67 (K ≤ min(M,N)) and
find that cophenetic correlation coefficient starts decreasing
after K is 3.
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Figure 11: Varying size of blacklists for mailinator dataset.

We ran gradient descent with K = 3 until the root mean
squared error (RMSE) between the original matrix R and
matrix R′ (obtained after the cross product of P and Q)
fell below 1% or the number of iterations exceeded 20,000.
We observed that 98.7%, 99.37% and 95.9% of prefixes in
Mailxam, Miraixa and Darkexa datasets have RMSE less
than 1%.

6.5 Parameter α for Choosing Addresses
Parameter α controls the set of addresses, which should

be considered for the expansion phase in BLAG. Figure 10
shows that for each dataset parameter α trades in accuracy
of BLAG with higher coverage. We see that as value of
α increases, BLAG’s recall increases but specificity drops.
We set α to 8 for all the three datasets. We observe that re-
call changes from 0.2% to 65.6%, 0.1% to 56.3% and 4.7%
to 11.6% for email, scanning and DNS dataset respectively.
While the specificity increases by 1.3–4.6% across the three
datasets. Higher values of α (9–10), bring less improvement
in recall with much higher loss in specificity. We observe
that recall increases only by 0.1–0.5%, while specificity re-
duces by 3.7–10.7% for all the three datasets.

7. RELATED WORK
In this Section we survey work related to blacklist analy-

sis, creation or aggregation.

Analysis of Blacklists. Kührer et al. evaluated the effec-
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tiveness of fifteen publicly available malware blacklists by
measuring accuracy and completeness on datasets consisting
of parked domains, sinkholed addresses and active malware
domains [62]. Pitsillidis et al. evaluated ten different blackli-
sts on purity, coverage, proportionality and timing [70]. Pu-
rity was measured by comparing feeds to Alexa top websites
and Open directory listing, whereas coverage, proportion-
ality and timing were obtained by comparing feeds to one
another. Both Kührer et al. and Pitsillidis et al. works sup-
port our own findings that blacklists are not accurate. Zhang
et al. evaluated nine blacklists using traffic logs from a re-
gional ISP [86]. They analyzed overlapping addresses be-
tween traffic logs and blacklists. But they were unable to
measure the accuracy of blacklists, as the traffic in the logs
was not labeled as malicious or legitimate. The main differ-
ence between these related works and ours is twofold. First,
our main focus is on distilling accurate information from bla-
cklists and aggregating it into a master blacklist; we use data
about current blacklists performance merely to motivate our
work. Second, we use an order of magnitude more blacklists
than previous works.

Improving Blacklisting. Highly Predictive Blacklisting [85]
(HPB) proposes a technique to create blacklists customized
to the given network. The algorithm is based on an algo-
rithm similar to Google’s page ranking scheme, which ide-
ntifies attackers that may target the specific customer, based
on the attacks reported by other similar customers. Though
this produces effective blacklists for a given network, HPB
will not uncover new attackers, which have not targeted a
specific customer group, while BLAG does not have this lim-
itation. Soldo et al. [78] built on HPB. They extended it to
use historical data about attack sources and destinations, and
to use a recommendation system to predict possible attack-
ers given a victim. In contrast, BLAG does not produce a
victim-specific blacklist, but a generic one. Our recommen-
dation system does not learn affinity between attackers and
victims, but between attackers and blacklists, and we use it
to improve recall, while keeping the specificity high. We ex-
pect that BLAG’s blacklists may be able to filter more attacks
than Soldo et al. approach.

There are several works which focus on improving spam
mitigation using new blacklisting techniques. PRESTA [83]
uses historical data from three spam blacklists provided by
Spamhaus [44], to infer temporal and spatial properties of
addresses and expand addresses into spatial regions, similar
to our /24 prefixes. PRESTA does not consider the possi-
bility of false positives from the expansion, which leads to
lower specificity compared to BLAG, as seen in Section 5.
Sinha et al. [77] present how to improve spam blacklisting,
by using a thresholding technique, which includes the num-
ber of sent messages into spammer identification process.
They also present an expansion technique, which blacklists
the entire BGP prefix if that prefix sent only spam. Though
this technique is effective in detecting new spammers, ex-
pansion to BGP prefixes is too coarse-grained and can lower

specificity, as shown in Section 6.
We could not directly compare Soldo et al. and Sinha et al.

approaches to BLAG, because both these approach need data
on attackers and victims, which is not publicly available.

8. DISCUSSION
In this section we discuss possible attacks on BLAG, and

some deployment issues.
Pollution. BLAG has no way, other than the reputation

system, to differentiate between low-quality and high-quality
information. Thus, if an attacker could produce a blacklist
that is very similar to some reputable blacklist (e.g., by copy-
ing it) and if he included a few public servers in it, BLAG
could conceivably propagate this information into its master
blacklist. This could then lead to legitimate traffic from these
public servers being dropped. Current blacklists could also
be polluted by the same approach. BLAG makes polluted
information less likely to propagate, than the use of individ-
ual blacklists. The attacker would have to carefully craft the
polluted blacklist so that the servers reside in the same /16
as many malicious hosts; otherwise BLAG would be able
to identify and discard low-quality information. Similarly,
the attacker would have to insert just one or a few servers
into these /16 ranges, or else their safety score would be too
low for inclusion in the master blacklist. This means that
the attacker cannot manipulate BLAG’s master blacklist at
will, but can just target those legitimate clients who share a
/16 range with many recently malicious hosts. While lim-
ited, this effect is still very undesirable and we would like to
prevent it.

BLAG can monitor the quality of each blacklist, e.g., how
many misclassifications each blacklist usually makes on the
second known-legitimate dataset L′. If a sudden increase is
detected, BLAG can use machine unlearning [55] to selec-
tively remove this list’s historical data from the final black-
list. Since BLAG processes data for individual /16 networks,
only the reputation scores for the affected /16 networks would
need to be recomputed. We leave the exact handling of pol-
lution attempts for our future work.

Frequency of running BLAG. Initially, BLAG would start
with some set of blacklists and it would be ran over their
current and historical data. Once the reputation scores are
computed, BLAG needs to be run only when a blacklist is
updated. When addresses are added or removed in a snap-
shot, only the reputation scores for the encompassing pre-
fixes must be recalculated.

Overhead of running BLAG. Blacklists could be updated
very often, which may lead to large overhead to generate
master blacklist. In our evaluation, there were about 4,000
updates per day and they took around 3 hours to process on a
4-core, 16GB RAM server. Since, BLAG evaluates blackli-
sts at a level of /16 prefix, BLAG operation can be distributed
among several machines to achieve scalability.

How can BLAG be used. Current blacklists are used to
pre-filter known offender traffic, i.e., they are used proac-
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tively. BLAG’s master blacklist can be used in the same
manner. But because BLAG’s specificity is lower than that
of individual blacklists, one could also decide to use it re-
actively, to prioritize which traffic should be dropped. For
example, when there is a heavy DDoS attack, when a worm
is spreading, or when a new vulnerability becomes known.
BLAG can also be used with ensemble filtering systems such
as SpamAssassin [65] where multiple detection techniques
are used in parallel on an email to decide if it is a spam or
ham. In such cases, BLAG can become one of the detection
techniques.

9. CONCLUSION
Blacklists are widely used by network operators, but they

usually miss many attacks. We have proposed BLAG– the
system that can identify high-quality pieces of information
from multiple blacklists, and aggregate them into a master
blacklist, with some addresses expanded into /24 prefixes.
Overall, BLAG has a higher recall than any single blacklist
or their naive aggregation with minimal loss in specificity.
BLAG also outperforms PRESTA, a competing approach, by
having much higher specificity. We thus believe that BLAG
could significantly improve network security, and lower col-
lateral damage to legitimate traffic from blacklisting.
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