

Simon S. Woo^{+*} Jelena Mirkovic⁺

HyCloud: Hybrid Cloud Resource Allocation Using Simulated Annealing

University of Southern California, Information Sciences Institute⁺ **NASA-Jet Propulsion Laboratory***

Problem statement

Cloud Computing provides a powerful and flexible paradigm allowing users to pick and choose variety of resources and services. However, currently, users are still limited to the choices only available within a single cloud service provider which may not be the optimum allocation of resources such as for minimizing overall task completion time with the same cost.

We consider a Hybrid Cloud Platform which enables users to choose machines across multiple cloud service providers to provide the optimum machine allocations to complete user tasks within required SLA (task completion time) & cost constraints. Further, we incorporated real benchmark data^[1] and performed simulation over representative scenarios after surveying 25 or more real Use Cases^[2].

Optimization Problem

Constrained Optimization Problem Formulation *min* total cost to complete the task

= min total cost (C)/time \cdot completion time(T)/task(1) s.t. total cost $< \alpha$ and completion time < SLA

Simulation Results Web Service/Health Care App 1.00E+04 9.00E+03 SLA vs. Completion Time

Machine Profiles

Machine types: $W = \{DB, WEB, Compute, Storage\}$ Cost Profile: $C = \{C_{DB}, C_{web}, C_{Compute}, C_{Storage}\}$ Completion Time Profile: $T = \{T_{DB}, T_{web}, T_{Compute}, T_{Storage}\}$ Leveraged actual benchmark data and cost information^[1] of **Amazon, Google, and Microsoft for generating Machine Profiles** Simulated Annealing (SA) Approach

Use the heuristic SA to obtain a global minimum to solve (1), finding a set of machines among different cloud service providers. Our SA algorithm takes the specific network topology, machine profiles, and SLA and searches a set of machines that yields the highest performance per cost.

SLA<7000msec

SLA<3000msec

SLA<5000msec

Main Contributions

- Incorporate real cloud machine benchmark data^[1] and surveyed various Cloud Computing Use Cases
- **Characterize the tradeoff between Hybrid Approach vs.** Single Provider Approach and quantify the benefits of Hybrid Approach with representative Use Cases

Demonstrated the clear performance and cost benefits of HyCloud in most use cases

Work in Progress

SLA<9000msec

- Working on extending our findings to more general **cases:** How could one allocate resources given V providers and W resources ? HyCloud(V, W, SLAs, T, C)
- **Researching on High Level/Top Down Approach to Perform Resource Abstraction and Decomposition**

ISI Graduate Student Symposium [2] http://aws.amazon.com/solutions/case-studies/ [1] Ang Li, Xiaowei Yang, Srikanth Kandula, Ming Zhang CloudCmp: Comparing Public Cloud **November 2012 at ISI, Marina Del Rey** Providers, Internet Measurement Conference, Nov 2010.

11 - 11