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ABSTRACT
Malware analysis uses debuggers to understand and manip-
ulate the behaviors of stripped binaries. To circumvent anal-
ysis, malware applies a variety of anti-debugging techniques,
such as self-modifying, checking for or removing breakpoints,
hijacking keyboard and mouse events, escaping the debug-
ger, etc. Most state-of-the-art debuggers are vulnerable to
these anti-debugging techniques.

In this paper, we first systematically analyze the spectrum of
possible anti-debugging techniques and compile a list of 79
attack vectors. We then propose a framework, called Apate,
which detects and defeats each of these attack vectors, by
performing: (1) just-in-time disassembling based on single-
stepping, (2) careful monitoring of the debuggee’s execution
and, when needed, modification of the debuggee’s states to
hide the debugger’s presence. We implement Apate as an
extension to WinDbg and extensively evaluate it using five
different datasets, with known and new malware samples.
Apate outperforms other debugger-hiding technologies by a
wide margin, addressing 58%–465% more attack vectors.

CCS Concepts
•Security and privacy → Software reverse engineer-
ing; Malware and mitigation; Software security engineering;
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1. INTRODUCTION
Debuggers enable detailed analysis of malware’s behaviors,
including disassembling of the binary code, capturing of the
system calls and the exceptions, etc. Malware authors have
strong incentives to make this analysis as difficult as possi-
ble. Malicious binaries exhibit evasive behaviors [4, 5, 13],
which aim to detect or disrupt the analysis in VMs or in
debuggers. Many contemporary malware samples use eva-
sive behaviors. Chen et al. [5] find that 39.9% and 2.7%
of 6,222 malware samples exhibit anti-debugging and anti-
virtualization behaviors respectively. Branco et al. [4] find
that 43.21% of 4 M samples exhibit certain anti-debugging
behaviors and 81.4% exhibit anti-VM behaviors. In anti-
debugging, malware detects debuggers by searching for
artifacts used to implement core debugger functionalities,
such as breakpoints or tracing [8, 20]. Popular debuggers
today, such as IDA [10], WinDbg [25], and OllyDbg [26], are
all vulnerable to anti-debugging. There are extensions to
these debuggers, which can disclose some attack vectors but
not the others. Similarly, research approaches against anti-
debugging (Sect. 5) cover a small subset of attack vectors.

Contributions. We propose Apate – a framework for
systematic debugger hiding. Our first contribution lies in
the systematic investigation of known and possible anti-
debugging attack vectors from a variety of sources [4, 5, 8,
20,27]. Our final set contains 79 attack vectors, 12 of which
are identified by us. We abstract the 79 attack vectors into
6 broad categories (17 subcategories), which enables us to
devise defense approaches per category. Second, we de-
velop original techniques for handling attacks in two out of
our six categories (suppressible exceptions and local tim-
ing), and refine and evaluate ideas sketched by prior work
for three other categories. Our debugger-hiding approaches
jointly handle all 79 attack vectors, while commercial debug-
gers and research solutions handle only 22%∼67% of those
attack vectors [4, 6, 8, 10, 15, 18–20, 26]. Third, we have im-
plemented our debugger-hiding approaches in Apate as an
extension to the popular debugger WinDbg. It augments the
existing debuggers with debugger-hiding capabilities and is
debugger-agnostic and OS-agnostic. While the implementa-
tions of some specific attack vectors and defense mechanisms
depend on our platform (Windows with WinDbg), the ba-
sic attack and defense strategies are portable to other OS
and debuggers. In addition, our systematic way of handling
attacks and the extensible architecture of Apate, make it a
promising tool to handle future malware evasion.



All source code and evaluation materials used in our work
are available at: http://steel.isi.edu/Projects/apate/.

2. ATTACK VECTORS
In this section, we categorize attack vectors that malware
can use to detect and evade debuggers. At the top level,
we differentiate between attacks that build on debugging
principles and attacks that leverage traces left by debuggers.
In our evaluation, popular debuggers could address some but
not all the attacks we discuss in this Section.

2.1 Attacks On Debugging Principles
Attacks in this category exploit the interactions between a
debugger and its debuggee in an active debugging session.
They detect mechanisms employed by debuggers for code
analysis, such as breakpoints, exception handling, code dis-
assembly, etc. The challenge in handling these attacks is
that core debugger functionalities must be preserved.

Breakpoint Attacks. Breakpoint attacks seek to detect
and/or evade breakpoints, which are the debugging mech-
anisms used to closely examine the debuggee’s behavior.
This category contains three subcategories: software read,
software write and hardware read.

To add a software breakpoint in a debuggee, a debugger re-
places the opcode byte at the breakpoint address with a 0xcc

byte (disassembled as an int 3 instruction). When this in-
struction is executed, a breakpoint exception will be raised
and passed to the debugger by Windows. To add a hard-
ware breakpoint, a debugger saves the breakpoint address in
a debug register rather than modifying a debuggee’s code.
Both software and hardware breakpoints can be detected or
evaded by malware. To discover a software breakpoint, mal-
ware may scan its code for 0xcc byte or it could evade by
overwriting its code. These attacks fall into software read
and software write subcategories in Table 1. To detect a
hardware breakpoint (subcategory hardware read in Table
1), malware can read the debug registers in CPU.

Exception Attacks. Exception attacks leverage the way
exceptions are handled by Windows in the presence of a
debugger, to detect or evade debugging. This category con-
tains the following subcategories: suppressible exception,
non-suppressible exception, and special-case attacks.
We notice that suppressible exception attacks have not been
previously discussed in literature.

Single-stepping is one of the key mechanisms used by debug-
gers to step through the debuggee code. It is implemented
by setting the trap flag, which raises a single-stepping ex-
ception after the next instruction is executed.

Malware can misuse the Windows’s exception handling mech-
anism to detect debuggers. In suppressible exception at-
tacks, malware raises an exception, which Windows does not
pass to applications. Windows will, however, pass such ex-
ceptions to the debugger, which may pass them to debuggee
during exception handling. Malware registers a custom han-
dler for these suppressible exceptions and detects presence
of a debugger if the handler is invoked. Conversely, non-
suppressible exceptions are always passed to applications

by Windows. The presence of a debugger can be detected if
a non-suppressible exception is consumed by the debugger.
There are also certain special cases of exception attacks,
which require us to perform additional handling (Section 3).

Flow Control Attacks. Attacks in this category abuse
the implicit flow control mechanism that is available in the
Windows operating systems, with the goal of executing out-
of-debugger. This category includes callback, direct hid-
ing, multi-threading, and self-debugging subcategories.

The implicit flow control is typically implemented through
callbacks, such as CallMaster(), enumeration functions, thr-
ead local storage (TLS), and many others. These callbacks,
usually take a function address as a parameter [8]. When
a debugger steps over a callback, the execution flow will
be transferred to the function specified as its parameter.
Malware exploits this in a callback attack, by registering
a callback function and performing its malicious activities
there, unseen by the debugger. Callback attacks using some
APIs have been previously discussed in literature, but we
discover eight new APIs that can be misused for these at-
tacks (shown in blue text in Table 1).

In direct hiding attacks, malware calls certain system APIs
to decouple itself from a debugger. In multi-threading at-
tacks, malware hides malicious behaviors by launching dif-
ferent threads which run outside of the debugger. In self-
debugging, malware spawns a child process which attempts
to debug its parent. Because any given process can only be
debugged by one debugger, the child process will fail, reveal-
ing the presence of the debugger.

Interaction Attacks. In this category of attacks, mal-
ware interferes with communication channels between a user
and a debugger, or it attempts to detect a debugger by slow
execution. This category includes hijacking and timing
attacks. In hijacking attacks, malware uses system APIs
to hijack a defender’s mouse, keyboard, or screen. Once
successful, the effect will remain until the malware process
exits. In timing attacks, malware aims to detect substantial
time delays introduced by interactive debugging. Malware
can either query local time (via system APIs), or network
time (via external time sources).

2.2 Detecting Debugger Traces
In addition to interfering with or analyzing the debugger’s
execution, malware can attempt to detect or circumvent de-
buggers by looking for traces of their presence in the file
system and memory. Malware can read the file system or
memory directly (direct-read subcategory) or via APIs
(indirect-read subcategory). In direct read attacks, mal-
ware looks for debugger traces in memory and registers using
assembly code. While some direct read attack vectors have
been discovered before, we discover two new ones (shown
in blue text in Table 1). In indirect read attacks, mal-
ware calls Windows APIs to detect a debugger. Some of
these APIs are designed for debugger detection; others are
designed for different purposes but can be re-purposed to de-
tect debuggers. For example, when malware calls IsDebug-

gerPresent(), it will return a non-zero value if the Process
Environment Block contains the field BeingDebugged.



Table 1: Classification of attack vectors, and their handling in Apate
Category Sub-category Representative Attacks Apate’s Handling Handling Novelty

Breakpoints
Software read 0xcc scan

Keep a copy and feed the original
byte

This is partly sketched by [8] but
generalized, implemented and
tested by us

Software write WriteProcessMemory(), mov Update Apate’s copy
Hardware read N/A in Apate N/A in Apate

Exception

Suppressible
EXCEPTION_INVALID_HANDLE,
EXCEPTION_HANDLE_NOT_CLOSABLE

Consume the exception

This is a new handling approach
proposed by usNon-suppress. all other exceptions

1. Monitor handler installation
and add bpt at entry; 2. Pass
exception to malware; 3. Moni-
tor handler’s completion and add
bpt at resume address

Special cases

Single-stepping (Clear the trap
flag to disable it)

Raise the exception

This is partly sketched by [8] but
generalized, implemented and
tested by us

int 2d (Debuggers use a different
resume address than native run)

Use correct exception resume ad-
dress

int 3 (Debuggee intentionally
raises a software breakpoint ex-
ception)

Modify our single-stepping ex-
ception to fake it and pass to de-
buggee

Flow control

Callbacks

CallMaster(), TLS, MouseProc(),
EnumDateFormats(), EnumDateFor-
matsEx(), EnumSystemLocale(),
EnumSystemCodePages(), EnumSys-
temLanguageGroups(),
EnumSystemGeoID(), EnumTimeFor-
mats()

Add breakpoints at the entry
points of the callback functions

This is a new handling approach
proposed by us

Direct hiding ZwSetInformationThread(),
NtSetInformationThread()

Skip the APIs

This handling is proposed and
implemented by [18, 19]. We do
the same in Apate

Multi-threading CreateThread() Set breakpoints at entries
Self-debugging Child process debugs the parent

process
Set DebugPort to 0

Interaction

Hijacking BlockInput(), SwitchDesktop()† Skip the APIs

Local Timing

GetLocalTime(), GetTickCount(),
KiGetTickCount(),
timeGetTime(), QueryPerfor-
manceCounter(), rdtsc

Maintain a high-fidelity time
source This is a new handling approach

proposed by us

Network Timing
Query external time source, pos-
sibly via encrypted conn.

N/A Still an open research problem

Anti- Inst. overlap Embed one instruction in an-
other

Single-stepping/Tracing

This is partly sketched by [8] but
generalized, implemented and
tested by us

disassembly Self-modifying xor code or copy from data sec-
tion

Traces

Indirect read int 2e, NtQueryInformationPro-
cess(DebugObjectHandle)

Modify debuggee states after
calling/skipping these APIs

Direct read

ProcessHeapFlags, ProcessHeap-
ForceFlags BeingDebugged, Heap,
NtGlobalFlag,

Overwrite with correct values
when launching client

segment selector registers (gs,

fs, cs, ds)†,
eflags manipulation

(popf/popfd/pop ss)†

Maintain a copy and feed the
original value This is a new handling approach

proposed by us

† Patterns consisting of multiple instructions/API calls

2.3 Completeness
We aimed to be as comprehensive as possible when enumer-
ating possible anti-debugging techniques. Starting from our
sixteen sub-categories and the Windows API manual [2], we
have identified 79 possible attack vectors. We cannot prove
that this list is complete, but we believe it comes close for
documented Windows OS and WinDbg functionalities, for
the following reasons. First, the attacks that use Windows
APIs only require enumeration of these APIs to be complete,
which we have done using the Windows API manual [2].
Second, attacks that read or write system registers (e.g.,
eflags) can only use a few of Intel x86 commands, compre-
hensively described in the Intel’s x86 manual [11], which we
used. Finally, the traces left by the WinDbg are well un-
derstood and documented in [25]. This leaves a few possible
sources of incompleteness, which we discuss in Section 6.

3. APATE
Apate is a collection of debugger-hiding techniques, which
systematically defeat our 79 attack vectors to hide a debug-
ger from malware. In this Section we describe the operation
of Apate as it is integrated with a debugger. We designed
Apate to be as platform-independent as possible, although
5 out of 17 handler implementations are specific to the Win-
dows OS. When porting to another OS, these 5 handlers
would have to be reimplemented.

3.1 Overview
Figure 1 shows the general operation of Apate. We first
pre-process the debuggee by parsing its portable executable
(PE) header [14]. From the header, we extract the entry
point and TLS callbacks (if any). We then add software
breakpoints at these locations. The user-space code of the
debuggee will start from one of these locations, which allows
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Figure 1: Overview of Apate’s Operation

Apate to get control of the program from the beginning.

Next, we start from the entry point discovered in the pre-
process stage, and single-step through each instruction in
the debuggee. This single-stepping helps us thwart anti-
disassembly attacks, which is achieved by setting the trap
flag in the eflags register. The cost of single-stepping lies
in the additional time it takes to analyze malware. Apate is
2.4–2.8× slower than other debuggers (Table 5), but single-
stepping greatly aids its detection of anti-debugging. Apate
detects between 58% and 465% more attack vectors than
other debugger-hiding approaches (Section 4).

When Apate receives its first chance to handle the single-
stepping exception, we disassemble and analyze the instruc-
tion that is about to be executed. Based on the instruction’s
semantics, we make a decision on its handling policy. We
have classified all the instructions in the Intel x86 instruc-
tion set as either calls (conditional and unconditional jumps)
or general instructions (everything else). If an instruction
is a call, we check if its destination resides in the user or
the kernel space. A user-space destination means that the
debuggee is calling its sub-routines, so Apate single-steps
into the call, which allows the defenders to analyze the en-
tire set of malware functionalities. If the call is invoking
a system API, Apate checks whether this API is in its list
of possibly exploitable APIs and may step over it or skip it

(see Section 3.2). For a general instruction (e.g., add), Apate
single-steps it as it is, unless it is part of one of our 79 attack
vectors. If this is the case, a vector-specific handling will be
invoked. Finally, we may need to modify the debuggee state
after executing the instruction to hide the Apate’s presence.

While we believe we were comprehensive in our enumeration
of attack vectors known to date (plus 12 new vectors discov-
ered by us), future malware attacks may devise new vectors.
New vectors can be easily added to Apate’s attack vector
library, and new handlers for these vectors can be added to
Apate’s vector handler library.

3.2 Handling Anti-Debugging
In Section 2, we discussed 17 subcategories of attacks that
aim to either detect or evade debuggers. In this section,
we illustrate how we handle 15 of these attacks in Apate
(we skip hardware breakpoints as Apate only uses software
breakpoints). This is also summarized in the 4th column in
Table 1. Out of 15 subcategories, we propose novel handlers
for four. For another eight subcategories, prior literature [8]
has sketched some ideas for possible defenses, but has not
explored all attack vectors nor described a generic solution
to a given attack category. For the remaining three attack-
vector subcategories, we borrow handlers proposed and im-
plemented by others. The 5th column in Table 1 summarizes
our novel contributions to attack handling.

Breakpoint attacks. Apate only uses software break-
points, which replace the opcode of the instruction with a
0xcc byte. This byte will raise an exception upon execu-
tion, and Windows will first allow Apate to handle this ex-
ception. To thwart software read and software write
attacks, Apate performs several actions. First, when a soft-
ware breakpoint is set, Apate records the breakpoint address
in a lookup table called breakpoint table, along with the orig-
inal opcode. Second, during an active debugging session, it
monitors the debuggee’s access to its code section and com-
pares the target of each read and write instruction against
the contents of the address field in the breakpoint table. On
a match from a read instruction, Apate returns the original
opcode from the table; whereas in a write, Apate updates
the opcode value in the table. Our handling of breakpoint
attacks has been sketched in [8], but the authors have not
generalized nor implemented this countermeasure.

An interesting case occurs when the malware’s instruction
at the breakpoint address is already an int 3. This scenario
requires special handling, which is also our novel contribu-
tion. We discuss this handling in Section 3.3.

Exception Attacks. Handling exception attacks is chal-
lenging. Malware can exploit a structured exception handler
(SEH), a vectored exception handler (VEH), or an unhan-
dled exception filter (UEF) to set up exception handlers.
After the debuggee sets a handler, it can raise exceptions
explicitly (e.g., int) or implicitly (e.g., divide by 0). When
handling exceptions, Apate passes non-suppressible ex-
ceptions to the debuggee but consumes suppressible ex-
ceptions. Before passing the non-suppressible exceptions,
Apate also sets a breakpoint at the handler entry.

When an exception handler completes, Windows will direct



the debuggee to the return address saved in its exception
record. Malware may tamper with the return address. To
handle this, Apate records the location of the return address
on the stack during its first chance of handling the excep-
tion. Apate steps into all debuggee’s exception handlers and
single-steps through their instructions. When a ret is en-
countered, Apate fetches the return address from the stored
location which may have been modified by malware, and
sets a breakpoint at that location. This keeps malware un-
der Apate’s control when they attempt to escape.

To our best knowledge, none of the current research works
differentiate between suppressible and non-suppressible ex-
ceptions. In addition, Apate sets breakpoints at handler en-
try and fetches the return address right before the handler
returns. This novel strategy enables Apate to fully analyze
malware and thwart escape attempts.

Flow Control Attacks. Attacks in this subcategory must
be handled carefully; otherwise, malware can escape the de-
bugger. For callback and multi-threading attacks, Apate
will insert a software breakpoint at the entry of the callbacks
or at the start address of the thread. These breakpoints will
transfer the control to Apate, enabling defenders to fully an-
alyze malware. Apate will skip the execution of the APIs in
direct hiding subcategory, by adding the size of the current
instruction to ip. To bypass self-debugging check, Apate
sets EPROCESS->DebugPort field to 0. This allows another
debugger to attach to the same process as Apate, which is
similar to the handling in [22].

Interaction Attacks. Apate will skip execution of system
calls in the hijacking subcategory. If an API changes any
system state, Apate mimics this effect to create an impres-
sion of faithful execution to malware.

The timing attacks can be very complex, as malware uses
many sources of time to detect debuggers. We handle only
attacks that use internal time sources (e.g., system clock).
Handling attacks that use external time sources is an open
research problem [27], and we leave it for future work.

To defeat timing attacks that leverage internal sources, Ap-
ate maintains a software time counter and uses it to ad-
just the return values of time queries. We update our time
counter by adding a small delta which reflects the CPU cy-
cles for each malware instruction that has been executed.
We also add a small, randomly chosen offset to the final
value of the time counter, which can defeat attempts to de-
tect identical timing of repeated runs. Previous works [7,23]
only add a constant value to their time sources, which can
be detected if malware measures whether the elapsed time
is the same across runs.

Debugger Traces. To hide the debugger traces, we have
enumerated memory locations and registers that may be
used to store these traces, and the Windows APIs that access
these locations. Apate compares each debuggee’s instruction
and its parameters with this list of APIs and locations, to de-
tect indirect read attacks. Upon a match, Apate provides
a consistent, fake reply which hides the debugger’s presence.

Instead of using APIs, malware may read memory directly
to look for debugger traces. To handle direct read attacks,

Apate detects accesses to the items in our list of debugger
trace locations, and overwrites contents at these locations
to hide debugger’s presence. These actions do not affect
the accuracy of the debugger’s execution. Some strategies
for handling indirect and direct read attacks were mentioned
by [8], but they were specific to a few attack vectors. We gen-
eralized these strategies, and implemented and tested them.
We also propose and implement two novel handlers for our
newly discovered attacks, which use cs and ds registers.

3.3 Attacks Against Apate
There are several possible attacks on Apate, which could
lead to malware detecting its presence. We have developed
special handlers for these attacks, which we describe below.
These handlers are also our novel contributions.

Our Apate framework sets the trap flag each time it single-
steps an instruction. If malware reads the trap flag, it can
detect the debugger’s presence. Similarly, malware may
clear the trap flag and check it afterwards to detect a debug-
ger. All reads and writes of the trap flag occur through a few
dedicated instructions, listed in “direct read” subcategory of
Table 1 (pushf/pushfd/popf/popfd, pop ss). These reads
and writes are detected by Apate. We handle the attacks by
creating a “debuggee-only” version of the trap flag. Malware
reads and writes manipulate this copy.

If malware sets the trap flag and Apate consumes the corre-
sponding single-stepping exception, malware can detect the
debugger’s presence. To handle this case correctly, Apate
needs to consume the single-stepping exceptions generated
by itself, but pass those raised by the debuggee. Apate de-
tects this case by checking the presence of the value 1 in the
debuggee-only version of the trap flag. If the single-stepping
exception is intentionally raised by the debuggee, Apate will
faithfully pass it to the debuggee.

The next attack is specific to WinDbg, which is our chosen
integration platform. WinDbg engine has a special han-
dling for the software breakpoint exception, which is inten-
tionally raised by the debuggee (int 3). WinDbg will lose
control when single-stepping this instruction. Since WinDbg
is closed-source software, we could not diagnose the reason
behind this occurrence. To work around this problem, when
Apate single-steps the instruction preceding int 3, it will
modify the single-stepping exception record on the stack to
transform it into a software breakpoint record. Specifically,
we change the exception code to be EXCEPTION_BREAKPOINT

and also update the exception address to be the beginning of
the int 3 instruction. This enables Apate to retain control
and step into the exception handler for int 3.

3.4 Uses of Apate
Apate can be used to automatically single-step instructions
in malware binaries, and record disassembled instructions
and system traces for further analysis. In this use case, Ap-
ate compares each instruction against attack vectors in its
library, and applies countermeasures automatically where
needed. This slows down the analysis (up to 2.8× in our
tests), but it may be acceptable, as malware analysis is fre-
quently performed in an automated, batch fashion.

Apate can also be used to assist interactive debugging, where



the users use single-stepping only when they desire to closely
examine a portion of malware code. In this case, the over-
head introduced by Apate’s single-stepping is negligible, com-
pared to user think time.

4. EVALUATION
In this section, we compare Apate against several main-
stream debuggers, using five data sets (Table 2). We per-
formed our testing on DeterLab testbed [3]. we use Windows
7 Pro x86 with SP1 (retail build) and we integrate Apate
with WinDbg v6.3 x86. The physical machine has Intel Xeon
CPU E3-1245 V2 @ 3.40 GHz, with 4 GB memory, and a
hard drive of 1 TB.

4.1 Anti-Debugging is Prevalent
We randomly select 1,131 binaries from Open Malware [9]
that are captured from 2006 to 2015. These samples are then
sent to a malware analysis website VirusTotal [21], which
uses 20∼50 anti-virus products to analyze each binary. We
retain the binaries detected as malicious by more than 50%
anti-virus products. This leaves us with 881 samples. Each
binary is automatically single-stepped for a maximum of 20
minutes under Apate. Some works [17] run samples for up to
several hours; however, their goal is to explore all execution
paths, while our goal is to detect the anti-debugging checks,
which usually occur at the beginning of a run.

Spectrum of anti-debugging techniques. Table 3 dis-
plays the details of anti-debugging techniques which are de-
tected in our samples. The third column shows the num-
ber (and, where interesting, the percentage) of samples that
apply a particular anti-debugging check. The last column
shows the maximum number of times the given check was
used by a single sample. We highlight only a few major
findings. In the “Traces” category, checking the trap flag is
the most popular anti-debugging technique, used in 15% of
the samples. Our results indicate that 83 samples read or
write to the trap flag to detect debuggers, and one sample
conducts 102,162 instances of the trap flag attack. In the
APIs category, int 2e attack is the most popular detection
technique, adopted by 2% of our samples. This instruction
is actually a system call and does not raise any exceptions.

4.2 Apate Outperforms Other Debuggers
Using our enumeration of attack vectors in Table 1, we de-
sign 79 tests cases, one per each vector. Table 4 gives the
number of test cases in each attack category, and the rest
of the table lists the numbers of test cases handled by each
debugger. Different test cases need to be evaluated in spe-
cific ways such as single-stepping, setting a breakpoint in
the code, free execution, etc. We will release all test cases
and evaluation scripts on our project website.

We compare Apate to several popular debuggers: WinDbg,
IDA Pro, OllyDbg, and Immunity Debugger [6]. Where pos-
sible, we evaluate both a basic version of a debugger and any
extensions that aim to handle anti-debugging. IDA Pro’s
version is 6.6, with two highly-ranked debugger-hiding plu-
gins: Stealth v1.3.3 [15] and ScyllaHide v1.2 [19]. We evalu-
ate OllyDbg 2.01 and two debugger-hiding plugins: OllyExt

v1.8 [18] and ScyllaHide v1.2. Since the aadp v0.2.1 [1] plu-
gin only works in OllyDbg v1, we switch to the latest v1.10
when testing aadp. Each test case takes about a few seconds
to evaluate in each debugger.

Results. We find that all basic versions of the debug-
gers can only handle a limited number of attack vectors.
WinDbg achieves the best performance, identifying 22 out
of 79 vectors, while OllyDbg and IDA Pro are able to han-
dle 21 and 17 respectively. Plugins substantially improve the
debuggers’ robustness. For example, IDA Pro with Stealth
and ScyllaHide plugins handles 43/17 = 2.5× more anti-
debugging techniques than its base version. Apate can han-
dle all 79 test cases. Compared to the second best de-
bugger – OllyDbg with OllyExt, Apate outperforms it by
(79− 50)/50 = 58%.

4.3 Apate Detects Known Vectors
In this section, we evaluate Apate using 4 malware samples
(Table 5), which are known to employ heavy anti-debugging
techniques and have been manually analyzed by others. We
also compare the performance of Apate with OllyDbg with
OllyExt extension, its closest competitor from the previous
evaluation. For brevity, we denote “OllyDbg with OllyExt”
as just “OllyExt”. In our evaluation, we set both Apate and
OllyExt to automatically single-step through the samples
until they exit.

Results. Table 5 shows the results. Apate overcomes all
the anti-debugging techniques in each sample, while OllyExt
fails to detect between one and three checks per sample.
Furthermore, Apate finds that the first sample also performs
trap flag attack, which manual analysis has missed [24].

Time Cost. In our evaluation, Apate performs 2.4∼2.8×
slower than OllyExt. This is expected, because Apate con-
siders more anti-debugging checks for each instruction and
handles more attack vectors, which improves the accuracy
of malware analysis.

4.4 Apate Deceives Malware
In this section, we evaluate if Apate can successfully hide a
debugger’s presence. For chosen 20 samples, we compare a
sample’s functionalities in a native run (without any debug-
ger) with its functionalities when run under Apate. If these
two match, we conclude that the debugger was hidden.

Native functionality. We enumerate a malware’s func-
tionalities by recording its file and network activities. We
use these as proxies for malicious behavior, as they are nec-
essary to exfiltrate data from compromised hosts, or send
new commands/data to these hosts. To filter out noise, we
first observe a base OS’s file and network activities, without
malware, in six runs. We create a union of all the created,
deleted, and modified files, and all network communications
– Ubase. Next, we perform three native malware runs and
create an intersection of activities found in all three runs –
Inative. We define the set difference Ssig = Inative−Ubase as
a malware’s signature. In our evaluation, we look for all the
items from this signature to determine if malware performs
the same malicious activities with and without Apate.



Table 2: Data Sets for Evaluation
Name Num Goal Findings

Unknown malware 881 Find spectrum of anti-debugging tech-
niques

1) Malware uses 0∼10 distinct anti-debugging checks; 2)
A single check can be used up to 695,219 times.

Vector tests 79 Evaluate popular debuggers v.s. Apate 1) Apate addresses all the attacks; 2) The second best
debugger solves 50

Known malware 4 Demonstrate practical use of Apate Apate finds all the anti-debugging techniques in the sam-
ples

Unknown malware 20 Prove Apate effectively hides a debugger
from malware

The samples show the same malicious behaviors in Apate
as in a physical machine

Packed binary 10 Prove Apate outperforms other research
solutiosn

Apate overcomes all the anti-debugging techniques pro-
vided by commercial packers

Table 3: Spectrum of Anti-debugging Techniques
Cat. Details Samples Max

Traces
Trap flag 83/15% 102,162

CheckRemoteDebuggerPresent() 10 1

APIs

int 2e 11/2% 1
CreateFileA() 5 5

OutputDebugString() 3 90
FindWindow(‘OLLYDBG’) 1 1

Soft.
bp/int

int 3 45/8.5% 6
int 1 1 1

Except.

ACCESS_VIOLATION 116/22% 776
PRIVILEGED_INSTRUCTION 13 2
ILLEGAL_INSTRUCTION 11 2

INTEGER_DIVIDE_BY_ZERO 3 1

Interact.

GetTickCount() 141/27% 695,219
QueryPerformanceCounter() 82 1

rdtsc 14 216,120
GetLocalTime() 8 156
BlockInput() 6 1

Implicit
flow

SEH 308/58% 148
UnhandledExceptionFilter() 40 9

TLS callback 16 2
AddVectoredExceptionHandler() 1 278

Disassem.
Self-modifying 145/27% 3,423

Instruction overlapping 125 805

Results. We test 20 random malware samples that make
moderate use of anti-debugging techniques as found by Ap-
ate. We set both Apate and OllyExt to single-step through
the samples automatically, similar to the method used in
Section 4.3. Malware functionalities under Apate were iden-
tical to those in native runs for all twenty samples. We thus
conclude that Apate successfully hides the debugger’s pres-
ence from malware. In OllyExt runs, however, nine out of
twenty malware samples show reduced activity, both with
regard to file accesses and network traffic. This indicates
that malware has detected OllyExt in 45% of the cases.

5. RELATED WORK
Covert Debugging. The goal of Apate is to help the de-
fenders identify and overcome anti-debugging techniques in
malware. Zhang et al. [27] present a debugging framework
MALT that employs System Management Mode (SMM) of
CPU to transparently study evasive malware. MALT in-
stalls the debugging functionalities in the entities provided
by BIOS. The paper lists 20 out of our 79 anti-debugging
techniques but it is unclear how many they can handle. Va-
sudevan et al. [23] propose Cobra that divides the debuggee’s
code into blocks based on branching instructions. To over-
come anti-analysis checks, the authors take two approaches.
First, Cobra scans for instructions that betray the real state
of the program, and replaces them with custom functions.

Second, Cobra maintains a copy of memory that mimics
the system states without debugger presence, and feeds this
state to malware upon queries. From its design, we conclude
that Cobra does not analyze certain exceptions or system
APIs for anti-debugging checks, and thus could not handle
suppressible exceptions, enumeration functions, or indirect
read attacks. Thus Cobra would miss approximately 50% of
our attack vectors.

Virtual Machine Frameworks. Some works approach
the anti-debugging problem by shifting the debugging func-
tionalities into the virtual machine monitors, under the as-
sumption that in-guest modules cannot detect out-of-guest
systems. For example, Ether [7] develops a virtual machine
based on hardware virtualization and incorporates certain
debugging functions in the underlying hypervisor. However,
Pek et al. [16] prove that Ether can still be detected.

Anti-debugging Techniques. Some studies discuss how
to classify anti-debugging techniques but they do not pro-
vide a systematic framework such as Apate, nor do they
offer handlers for anti-debugging checks. Kirat et al. [12]
propose MalGene, an automated technique for extracting
analysis evasion signatures. MalGene leverages a bioinfor-
matic algorithm to locate evasive behavior in system call se-
quences. While they are capable of extracting evasion signa-
tures, there is no systematic enumeration of attack vectors,
and we cannot compare MalGene directly to our vectors.

6. LIMITATIONS AND FUTURE WORK
While Apate surpasses other debuggers in our tests, there
are some limitations that we need to address in our future
work. First, our tests prove that Apate can defeat every
attack vector in our library, but it is possible that there
are some combinations of vectors, or some vectors we have
not discovered, which Apate will not be able to handle. If
new anti-debugging checks are devised in the future, Ap-
ate’s library of attack vectors and handlers can be extended
accordingly. Our future work will lie in standardizing these
extensions and evaluating human burden. Second, in our
attack vector enumeration, we did not consider the use of
undocumented APIs or undocumented system objects. To
mitigate this problem, we may treat all the undocumented
APIs as the malware’s own functions and step into them, but
this will introduce substantial overhead. Third, if malware
queries network time using clear-text packets, we can inter-
cept and modify the embeded time. However, if the packets
are encrypted, it will be hard to detect the timing behavior.
We plan to explore these limitations in future work.



Table 4: Attack vectors, handled by different debuggers

Category
Test IDA IDA Pro/ IDA Pro/ Olly- OllyDbg/ OllyDbg/ OllyDbg/ Imm. Win-

Apate
Cases Pro Stealth ScyllaHide Dbg OllyExt ScyllaHide aadp Dbg Dbg

Traces 9 0 5 5 0 5 5 3 0 4 9
APIs 21 4 15 16 5 18 18 8 4 7 21

Hard. bp 1 0 1 1 0 1 0 0 0 0 1
Soft. bp 5 0 0 0 2 2 2 1 0 0 5
Except. 18 8 14 13 8 13 13 2 9 5 18
Interact. 9 0 2 2 0 4 3 3 0 0 9
Imp. flow 14 5 6 6 5 6 6 5 4 5 14
Disassem. 2 0 0 0 1 1 1 0 0 1 2

Total 79
17 43 43 21 50 48 22 17 22 79

22% 54% 54% 27% 63% 61% 28% 22% 28% 100%

Table 5: Results of Known Malware Samples
No. Apate OllyExt Anti-debugging Techniques OllyExt’s Failure Points

1 176 min 63 min
SEH attack, anti-disassembly, int 2e attack,
int 3 attack, trap flag attack (reading), self-
modifying

Anti-disassembly, int 2e attack, trap
flag attack

2 71 min 29 min
BeingDebugged flag (XP, Win7), ProcessHeap flag
(XP), NtGlobalFlag (XP, Win7)

ProcessHeap flag (XP)

3 76 min 32 min
TLS callback, FindWindow(),
OutputDebugStringA()

OutputDebugStringA()

4 65 min 26 min
QueryPerformanceCounter(),
Exception attack, GetTickCount(), rdtsc

Exception handler entry and return
address, rdtsc
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